Smap — socket map utilities

version 2.1, 1 July 2021

Sergey Poznyakoff

Copyright (©) 2009-2021 Sergey Poznyakoff

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, with the Front-Cover texts being
“Smap Manual” and with the Back-Cover Texts as in (a) below. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

(a) The Back-Cover Text is: “You have freedom to copy and modify this manual, like GNU
software.”

Short Contents

O AW > 0 1 O Ok W

Introduction e 1
Overview of the Smap Architecture....................... 3
The Socket Map Server, 7
Command Line Syntax......... 17
Smapd Configuration File 19
Modules Shipped with Smap 25
Socket map client e 43
How to Report aBug........... ... L. 49
Example: Using smapd with MeTA1 51
The Sockmap Protocol 55
Debug Categoriesoou i 57
GNU Free Documentation License....................... 59

Concept Index . ..o e 67

Table of Contents

1 Introduction.....................................
2 Overview of the Smap Architecture...........

3 The Socket Map Server

3.1 Smapd Operation Modes ...,
3.2 LOggINng . .
3.3 Tracing and Debugging. ...,
3.4 Runtime Privileges........ ...
3.5 Server Configuration,
3.6 TCOP WIapPerS. . oo vttt ettt et e
3.7 Loadable Modules........ ..o
3.8 Databases.
3.9 Query Dispatch Rules........ ... i,
3.10 Transformations
3.11 Smapd Exit Codes. ...

4 Command Line Syntax........................ 17

6.2.1 Variable Expansion........o
6.2.2 Mailutils Loading Sequence...................coiiiii..
6.2.3 Mailutils Databases
6.2.4 Mailutils Auth Mode
6.2.5 Mailutils MBQ Mode. ...,
6.3 Guile
6.3.1 Virtual Functions i i
6.3.2 Guile Output Ports ...
6.3.3 Guile Initialization

6.5 PoStgreso
6.5.1 Postgres Configuration
6.5.2 Postgres Query and SMAP Replies.......................

6.6 1dap ..ot

iii

iv
6.6.1 LDAP Configurationcoiiiiiiiieiiineann.. 38
6.6.2 LDAP Filter and SMAP Replies.......................... 38
6.7 Sed .. i 39
6.7.1 Loading sed module............ ... i i 39
6.7.2 Defining Sed Databases ...t 39
6.7.3 S-EXPreSSIONS . .\ttt ettt ettt e e 40
6.7.4 Using Sed for Lookups, 40
7 Socket mapclient.............................. 43
7.1 Single Query Mode.o 43
7.2 Interactive Mode....... ..o 43
7.2.1 Smapc Command Summarycooeeiiieanna ... 45
7.3 Initialization File........... . 46
7.4 Smap Invocation......o 47
8 How to ReportaBug......................... 49
Appendix A Example: Using smapd with MeTA1l
.. ol
A.1 Configure local_user_map. ... 51
A.2 Configure aliaSesouiiii 51
A3 Dispatch Rules...... ... 52
A4 MeTAl configurationoovuiiiiiiieiii e, 52
Appendix B The Sockmap Protocol........... 55
B.1 Sendmail Status Codesooiuiiiiiiii i 55
B.2 MeTAl Status Codesouiiniii e 55
B.3 Mailfromd Status Codes ..., 56
Appendix C Debug Categories................. 57

Appendix D GNU Free Documentation License
.. 59
D.1 ADDENDUM: How to use this License for your documents. ... 65

Concept Index.............iiiiiiii. 67

Smap Manual

Chapter 1: Introduction 1

1 Introduction

When a Mail Transfer Agent (MTA) receives a message, it undertakes a sequence of steps to
decide the fate of that particular message: whether to deliver it locally, to relay it to some
other site, to reject or bounce it, or to take some other action. When taking its decision,
MTA examines a set of data sources which hold such data as lists of local and relayed
domains, tables of system accounts, etc. These data sources may be of various nature. For
example, domain tables can be stored on disk as plaintext files or as DBM files; they can
also be retrieved from LDAP or from some database management system. To provide a
uniform access to such a variety of data sources, MTA usually implement some intermediate
layer. Sendmail' and MeTA1? call this layer a map.

Among various types of maps implemented by these MTAs, there is one which merits
special attention. It is socket map, also called sockmap, for short. This map is not associated
with any particular data storage. When the MTA looks up for a key in a sockmap, the latter
sends the request over TCP/IP to a preconfigured address, waits for a reply from there and
hands it back to the MTA. It is supposed, of course, that some server is listening on this
address.

Sockmaps provide an incredibly effective way of extending the functionality of MTAs.
For example, one may use them to configure one’s Sendmail to keep all data in an SQL
database or in any other database, not directly supported by the MTA.

So far sockmaps have been given undeservedly little attention. Perhaps, this is due to
lack of suitable free software servers that could be queried using them.

Smap aims to fill this gap. Its main component is smapd — a modular server which
handles sockmap requests. Instead of handling each request itself, smapd relies on loadable
modules to provide the requested functionality. In other words, smapd is responsible for
handling socket map protocol, and for dispatching queries to appropriate modules. The
module itself is responsible for looking up the requested key and returning the result.

Second important part of the package is a set of loadable modules for smapd. These
modules cover several important database management systems and make it possible to
easily configure servers for retrieving data from them.

Furthermore, the package provides a framework for writing new modules for smapd. New
modules may be written either in C or in Guile.

And finally, Smap contains a client program, smapc, which may be used to query arbi-
trary socket servers from the command line. Among other possible uses, smapc is a valuable
tool for testing your socket servers.

The main audience of Smap are administrators of Sendmail or MeTA1 mail transport
agents, as well as those who use Mailfromd?, a flexible general-purpose mail filter.

L See http://wuw.sendmail.org.
2 See http://www.metal.org.

3 See mailfromd.software. gnu.org.ua.

http://www.sendmail.org
http://www.meta1.org
mailfromd.software.gnu.org.ua

Chapter 2: Overview of the Smap Architecture 3

2 Overview of the Smap Architecture

The Smap server consists of the following conceptual parts: smapd daemon, map modules
and databases.

smapd daemon

The smapd daemon is the principal part of the system. It is responsible for han-
dling incoming connections and dispatching socket map requests to appropriate
modules.

Map modules

Databases

These are external loadable libraries which contain backend-specific lookup
drivers. For example, one module may provide a driver for lookups in plain-
text files, another one may handle DBM lookups and yet another — searches in
MySQL databases. Notice, that modules provide abstract drivers, in the sense
that they are not bound for look ups in particular disk files or databases. This
specific information is supplied by Smap databases.

A database is an intermediate logical entity associated with a particular module.
The database provides actual configuration for the module. Several different
databases may be associated with the same module, thereby creating several
instances of the same lookup driver.

If the underlying module allows for such use, a database may also be used to
modify input map name and/or key value, before passing them on to another
database.

The relationships between these parts are shown in the figure below:

4 Smap Manual

CLIENT

T -

|

|

|

v

DISP L - Mod A
hﬁ Db llbll _______] - -

Db """ \
Db lldll qud B
pbrer | |
b "' Mod C

Figure 2.1: Smap Control Flow

Here, the smapd daemon is configured with six databases (shown as Db a through Db
f), interfacing to three different modules (boxes Mod A through Mod C). The databases
‘a’ and ‘b’ interface to module ‘A’, databases ‘c’, ‘d’ and ‘e’ interface to module ‘B’, and
database ‘£’ interfaces to module ‘B’. All three modules are linked with the 1libsmap library.

The box labeled ‘CLIENT’ represents a client program. When smapd receives a request
from client (its path is shown as a dashed line), it uses a set of dispatch rules (see the ‘DISP’
box on the figure above) to dispatch it to the appropriate database. This database (‘Db b’,
on the figure) is used to pass the request to the underlying module (‘Mod A’). The module,
after performing a look-up, sends the response back to the client (the dot-dashed line on
the figure), using interface functions from libsmap. The latter is responsible for formatting
the answer in accordance with the socket map protocol.

If the request matches no database, the server sends a default ‘NOTFOUND’ reply back to
the client.

Dispatch rules mentioned above are supplied by the user in the smapd configuration file.
They resemble access control lists: each rule consists of a condition and destination. The
condition may use various data from the connection and request itself, such as client IP
address or map name from the request, and compare them with some static data. If the

Chapter 2: Overview of the Smap Architecture 5

condition yields true, the destination part of the rule points to the database which will
handle this request.

Chapter 3: The Socket Map Server 7

3 The Socket Map Server

Socket map server smapd is the main part of the package. When invoked, it reads the config-
uration file and parses its command line to determine its configuration settings. Command
line settings override ones from the configuration file. The default configuration file is
/etc/smapd.conf! After that, smapd loads the requested modules and starts operation.

In this chapter we will describe the server operation in detail. The discussion below will
often refer to command line options and configuration statements, so we’ll first describe
shortly what are those. The formal description will be given later.

Command line options have two forms. In traditional, or short form, an option is a
letter prefixed by a dash (e.g. -f). In long form, an option consists of two dashes and
option name (e.g. --foreground). Both option forms allow for an argument. For more
information on option syntax, see Chapter 4 [smapd-options]|, page 17.

Configuration file uses the traditional UNIX syntax. Each statement occupies a single
line. Very long lines may be split into several physical lines by ending each one with
a backslash character. Comments are introduced with the ‘#’ character: the character
itself and everything after it up to next newline is ignored. For a detailed description, see
Chapter 5 [smapd-config], page 19.

You can instruct smapd to read an alternative configuration file instead of the default
one. It may be necessary, for example, to test a new configuration. To do so, use the
--config=file (-c file) command line option. Its argument specifies the file name to
read, e.g.:

$ smapd -c ./mysmapd.conf

To check whether your configuration is error-free, use the --1int (-t) option. It instructs
smapd to parse the configuration file and exit after that. Any errors found are reported on
the standard error. The exit code is ‘0’ if the file parsed without errors and ‘78’ otherwise
(see Section 3.11 [exit codes], page 15, for a full list of exit codes). For example:

$ smapd -t

Of course, the two options may be used together:

$ smapd -t -c ./mysmapd.conf
or, in long form:

$ smapd --lint --config ./mysmapd.conf

3.1 Smapd Operation Modes

There are two modes of operation. In standalone mode, smapd detaches itself from the
terminal and listens on incoming requests in background. In other words, it becomes a
daemon. When a connection arrives, the server spawns a copy of itself (called child process)
to handle it. Thus, a number of incoming connections are handled in parallel. This is the
default mode.

! To be precise, it is sysconfdir/smapd.conf, where sysconfdir is the name of system configuration di-
rectory, determined when configuring the package. The two most frequently used values for it are /etc
and /usr/local/etc.

8 Smap Manual

In inetd mode, smapd does not listen on network addresses nor becomes a daemon.
Instead, it reads requests from its standard input and sends replies on its standard output.
As its name implies, this mode is intended for use from the inetd.conf file.

The inetd mode is requested from command line using the -—inetd (-1i) option, or from
configuration file, using ‘inet-mode yes’ statement.

3.2 Logging

The server determines automatically where its diagnostics output should go. By default,
it goes to standard error. However, after detaching from the terminal in standalone mode,
smapd sends diagnostics to syslog, using facility ‘daemon’ by default. The same applies also
if its standard input is not attached to a terminal.

Two command line options are provided to manually alter these defaults. The --stderr
(-e) option instructs smapd to always send its diagnostics to the standard error, In contrast,
the --syslog (-1) option forces it to use syslog.

The log facility can be changed in configuration file, using the ‘log-facility’ statement
(see [conf-log-facility], page 20), or in the command line, using the --log-facility (-F)
option. In both cases, the argument is the facility number or symbolic name. Valid names
are: ‘user’, ‘daemon’, ‘auth’, ‘authpriv’, ‘mail’, ‘cron’, and ‘local0Q’ through ‘local7?’.

Similarly, the log tag can also be changed, either from the configuration file, using the
‘log-tag’ statement, or from the command line, using the --log-tag (-L) option,

3.3 Tracing and Debugging

The amount of information logged by the server is configurable. By default, it is quite
silent and outputs only diagnostics that call to special attention, such as errors and the
like. You may request more information, however. For further discussion, it is convenient
to introduce two main information groups: query traces and debugging information. Query
traces are log messages that show received queries and corresponding replies. They look
like:

user bar => NOTFOUND
access connect:111.67.206.187 => 0K REJECT

The part to the left of the ‘=>" sign shows the query exactly as received from the client,
i.e. the first word is the map name, and the rest of words constitute the key. The part to
the right of ‘=>’ is the reply to this query.

To enable query traces, use the --trace (-T) command line option or ‘trace yes’ state-
ment in the configuration file.

When using syslog, query traces are reported using the ‘info’ priority.

Some requests may be of particular interest to you, whereas others may not be relevant
at all. There is a way to abridge the traces to show those relevant requests only. If you
give the ——trace-pattern=pattern option, only those requests that begin with pattern?
will be shown. For example, to show only positive responses, use

2 Actually, the argument would better be named prefix, but I plan to implement globbing patterns (or
maybe even regular expressions) in future versions, so I refer to it as pattern in anticipation.

Chapter 3: The Socket Map Server 9

--trace --trace-pattern=0K
The same can be requested in the configuration file as well:

trace yes
trace-pattern OK

Any number of --trace-pattern options (or configuration statements) may be given.
The server will log only those queries that match one of the patterns specified by them.

Debugging information is auxiliary diagnostics reflecting various details of internal func-
tionality of smapd. Although aimed primarily to help in debugging the server, it may
occasionally be of use for server administrators as well.

Debugging information is requested using the --debug (-d) command line option or
‘debug’ configuration statement. In both cases, the argument is a debug specification,
consisting of two parts, separated by a dot: ‘cat.lev’. The cat part is a debug category.
It is either an integer number identifying the category, or its symbolic names. For a list of
categories and their meaning, see Appendix C [Debug Categories|, page 57.

The lev part is the category level, an integer specifying how much verbosity is requested
from that category. The ‘0’ value means no verbosity (i.e. to disable that category), the
value of ‘100’ means maximum verbosity. The convention is that levels below ‘10’ may be
of occasional use for sysadmins, whereas higher values are useful only for debugging.

To enable several debug categories, use several —-debug option (or ‘debug’ configuration
statements).

3.4 Runtime Privileges

By default smapd runs with the privileges of the user that started it. Normally, this user
is root. If you wish it to switch to some unprivileged user after startup, use the user
configuration statement:

user daemon

The above example instructs smapd to switch to the UID of the user ‘daemon’ and to the
GID of its principal group. The rest of groups the user might be a member of is dropped.
To retain all supplementary user groups, use the allgroup statement. Its argument is a
boolean value, i.e. ‘yes’, ‘on’, ‘true’, or ‘t’ to indicate the true value, and ‘no’, ‘off’,
‘false’ or ‘nil’ to indicate false. So, to switch to the user ‘daemon’ and also retain all its
supplementary groups, one would write:

user daemon
allgroups yes

You may also retain only some of the user’s group, or even some groups the user is not
member of. This is done using the group statement:

user daemon
group mail mysql

Arguments to group are any number of valid group names.

Notice, that while running smapd with non-root privileges might be a good idea, it
may render some modules useless. For example, the mailutils module in ‘mbq’ mode (see
Section 6.2.5 [mbq], page 28) requires root privileges for normal operation. To allow for such
uses, instead of setting global user privileges, set them on a per-server basis. See Section 3.5
[servers], page 10, for a detailed discussion of this technique.

10 Smap Manual

3.5 Server Configuration

Servers are internal smapd objects, responsible for listening on sockets and handling socket
I/0 operations. Each server has a server id, which is a unique name associated with it, and
socket address, which describes the socket this server handles.

Socket addresses are represented as URLs. Smap version 2.1 recognizes the following

URL forms:

inet://ip:port
Listen on the IPv4 address ip, on the given port. IP address may be given either
in “dotted-quad” notation or as a hostname. Port may be specified either as a
port number, or as a name of a service from /etc/services.

unix://pathname
Listen on the UNIX socket pathname. Notice that the name of the socket must
be absolute, so you would usually have three slashes running together, e.g. the
notation

unix:///var/run/smap.sock

means UNIX socket /var/run/smap.sock.

The server statement configures servers. It takes two mandatory arguments: the socked

ID and URL, e.g.:

server main inet://10.10.1.11:3056
server local unix:///var/run/smap.sock

These statements configure two servers. The one called ‘main’ is listening on IP
10.10.1.11, port 3056. The one called ‘local’ listens on UNIX socket /var/run/smap.sock.

If a server is assigned an ‘inet’ address, access to it will be controlled by TCP wrappers.
The server ID is used as daemon name. See the next section (see Section 3.6 [TCP wrappers],
page 12) for a detailed description.

The server statement has also another form, called block form, which allows to configure
more details. In this form, the statement is given third argument — the word ‘begin’. This
statement is followed by one or more statements supplying additional configuration for this
server, followed by the word ‘end’ on a line by itself, which closes the construct. This is
illustrated in the following example:

server local unix:///var/run/smap.sock begin
backlog 10
user mail

end

Statements which may be used between ‘begin’ and ‘end’ fall into two categories: priv-
ilege control statements, and socket configuration statements.

The former are user, allgroups and group, described in the previous section (see
Section 3.4 [privileges|, page 9). Syntactically they are exactly the same as their public
scope counterparts. The only difference is that they apply only to child processes spawned to
handle connections to that particular URL. For example, consider the following statement:

server local unix:///var/run/smap.sock begin
user daemon
group mail mysql

Chapter 3: The Socket Map Server 11

end

This configuration works as follows. The master smapd process runs with root privi-
leges. When a connection is requested to socket /var/run/smap.sock, the master spawns
a subprocess to handle that connection. This subprocess switches to the UID and GID of
user ‘daemon’ and retains GIDs of the groups ‘mail’ and ‘mysql’ and then enters the mail
read-and-reply loop. The ownership of the socket /var/run/smap.sock is set to UID of
user ‘daemon’ and GID of its primary group (see also the description of owner, below).

Of course, the per-server privilege control statements work only if the master daemon
runs with the root privileges.

The second group of server statements are socket configuration statements. Similarly to
privilege control statements, these too may appear inside a server block statement as well as
outside of it, in the global scope (with the exception of the owner statement, which is allowed
only in server scope). When used in global scope, they affect all server statements. When
used in per-server context, they apply to that particular server only. These statements are:

backlog number [Config]
Sets the maximum size of pending connections queue for sockets. If a connection
request arrives when the queue is full, the client receives an error with an indication
of ‘ECONNREFUSED’.

Default backlog is 8.

reuseaddr bool [Config]
If bool is ‘yes’ reuse existing socket addresses (both INET and UNIX). This is the
default.

max-children number [Config]

Maximum number of children processes allowed to run simultaneously. When the ac-
tual number of children reaches number, the server stops refusing further connections
until any of them terminates. The value of ‘O’ means ‘unlimited’.

The default limit is ‘128’.

single-process bool [Config]
Operate in single-process mode. This options may become necessary only when de-
bugging the smapd daemon. Never use it in production environment!

socket-mode mode [Config]
Set file mode for UNIX socket. Specify the mode argument either int octal notation
(e.g. ‘600’), or in chmod-style notation (e.g. ‘rw-------).

socket—-owner user:group [Config]

Set socket ownership to the given user and group. This applies only to UNIX sockets.
User and group may be specified either by their symbolic names or numeric IDs.
FEither user or group may be omitted. There are following cases:

owner user:group

Set both owner UID and GID.

owner user
Set UID of the user user and GID of his primary group.

12 Smap Manual

owner user:
Set UID of the user user, but do not change the GID.

owner :group
Set only owner GID, do not change the UID.

Note, that this statement cannot be used outside of server scope.

3.6 TCP Wrappers

Access to servers having addresses in ‘INET’ family is controlled using TCP wrappers®.

This system is based on two files, called tables, containing access rules. There are two
tables: the allow table, stored in file /etc/hosts.allow, and the deny table, kept in file
/etc/hosts.deny. The rules in each table begin with an identifier called daemon name.
Access to a Smap server is controlled by two entries: a global one, with the daemon name
‘smapd’, and per-server one, with server ID (see Section 3.5 [servers], page 10 as its daemon
name. The latter takes precedence over the former. For example, if you have the following
in your smapd.conf:

server main inet://192.168.10.1
and wish this server to be accessible only to machines 192.168.10.2 and 192.168.10.3, then
you would add the following line to your /etc/hosts.allow:
main: 192.168.10.2 192.168.10.3
and the following line to your /etc/hosts.deny:
main: ALL
The former allows access from these two IPs, and the latter blocks it from any other IPs.

A detailed description of TCP wrapper table format lies outside the scope of this docu-

ment. Please, see Section “ACCESS CONTROL FILES” in hosts_access(5) man page, for
details.

3.7 Loadable Modules

Mapper modules are external pieces of software designed to handle a particular subset of
map queries. They are built as shared libraries and loaded into smapd at startup.

Modules are loaded using the module command:

module module-id module-name [args] [Config]
Load module module-name. Additional arguments (args), if specified, are passed to
the module initialization function.

The module-id is a unique identifier, which will subsequently be used to refer to that
module.

A module load path is an internal list of directories which smapd scans in order to find
a loadable file name specified in module statement. By default the scan order is as follows:

1. Additional search directories specified by prepend-load-path (see below);

3 This feature requires smapd to be compiled with the TCP wrappers library libwrap. It is always enabled
at configure time, unless libwrap is absent, or you explicitly disable it.

Chapter 3: The Socket Map Server 13

Smap module directory: $prefix/lib/smap;
Additional search directories specified by append-load-path (see below);
Directories specified in the environment variable LTDL_LIBRARY_PATH.

Al

The system dependent library search path (e.g. on GNU/Linux it is set by the file
/etc/1d.so.conf and the environment variable LD_LIBRARY_PATH).

Values of LTDL_LIBRARY_PATH and LD_LIBRARY_PATH must be colon-separated lists of
absolute directory names, for example: ‘/usr/lib/mypkg:/1ib/foo’’.

In any of these directories, smapd first attempts to find and the given module-name
verbatim and to load it. If this fails, it tries to append the following suffixes to it:

1. the libtool archive suffix ¢.1a’

i

2. the suffix used for native dynamic libraries on the host platform, e.g.: ‘.so’, ‘.sl’, etc.

Additional search directories may be configured with prepend-load-path and append-
load-path statements:

prepend-load-path path [Config]
Prepends the directories listed in its argument to the module load path. The path
argument must be a colon-separated list of absolute directory names.

append-load-path path [Config]

load-path path [Config]
Appends the directories listed in its argument to the module load path. The path
argument must be a colon-separated list of absolute directory names.

3.8 Databases

A database is a logical entity associated with a particular module, that provides a specific
configuration for it. In other words, database is a configured instance of the module.

Databases are declared using the following statement:

database dbname modname [args] [Config]
Declare database dbname as an instance of module modname. This module should
have been declared previously using the module statement (see Section 3.7 [loadable
modules|, page 12). Optional args provide configuration information for the module
initialization function. They are module-specific.

To illustrate this, let’s consider the ‘echo’ module, which replies to any request with a
constant string supplied to it as arguments (see Section 6.1 [echol, page 25). The following
example configures two instances of this module:

database nomap echo NOTFOUND No such map
database tempfail echo TEMP Try again later

The ‘nomap’ database always sends the string ‘NOTFOUND No such map’ in reply. The
‘tempfail’ database replies with the string ‘TEMP Try again later’.

14 Smap Manual

3.9 Query Dispatch Rules

When a query arrives, smapd uses query dispatch rules to decide to what database to
dispatch this query. Dispatch rules are somewhat similar to ACLs: each rule consists of a set
of conditions and a target part. The rules are joined in a list. When applied to a particular
query, this list is scanned from top down. The conditions of each rule are evaluated using
the query as their argument. If all conditions return ‘True’; then the target part of this
rule is applied. The target part may either transform the map name and/or key value (a
transformation rule), or indicate a database to dispatch this query to (a destination rule).
After applying a transformation rule, the scanning resumes at the next rule. Destination
rules end the processing.

If the list is exhausted without having found a matching destination rule, smapd sends
back the default ‘NOTFOUND’ reply.

Consider for example the following rule:
dispatch map eq alias database maildb

It says that if the map part of a query is the word ‘alias’, then this query must be
handled by the database ‘maildb’.

The map condition allows for more sophisticated comparisons. If you use ‘like’; instead
of ‘eq’, than shell-style globbing patterns are used. For example, this rule

dispatch map like us* database user
matches queries whose map part begins with ‘us’.
Finally, you may also use regular expressions:
dispatch map regexp /(alias)|(virtusers)/ database maildb
See [cond-map], page 23, for a detailed description of this condition.

Another important condition is from. It returns ‘True’ if its argument, which is an IP
address or a CIDR, matches the IP of the machine that sent the query. For example, the
following rule directs all queries coming from IP addresses 192.168.0.1 through 192.168.0.31
to the database ‘local’:

dispatch from 192.168.0.0/27 database local

Several conditions may be used together. The result is ‘True’ if all conditions yield
‘True’. For example:

dispatch from 192.168.0.0/27 \
map regexp /" (alias)|(virtuser)$/ \
database local-maildb

This rule dispatches to the database ‘local-maildb’ all queries coming from the network
192.168.0.0/27 and having ‘alias’ or ‘virtuser’ as their map part.

The server condition is often used together with from. Its argument is the id of a
server (see Section 3.5 [servers|, page 10) declared in the configuration. The condition
returns ‘True’ if the query was sent to that particular server. For example:

dispatch from 192.168.0.0/27 \
server privileged
database secret
dispatch from 192.168.0.0/27 database public

Chapter 3: The Socket Map Server 15

These rules dispatch to the database ‘secret’ any queries coming from IP address in
network 192.168.0.0/27 and received by the server ‘privileged’. Queries from that network
accepted by another servers are dispatched to the database ‘public’. It is, of course,
supposed that somewhere in the configuration file there is a declaration, that looks like

server privileged inet://192.168.0.1:3145

The result of any condition may be reverted using the ‘not’ prefix before it, e.g.:

dispatch from 192.168.0.0/27 \

not map regexp /" (alias)|(virtuser)$/ \
database user

There is a special condition which is convenient for the last rule in the list. The ‘default’
condition always returns ‘True’, so this rule:

dispatch default database nomap

will match any rule and dispatch it to a database named ‘nomap’. The ‘default’ condition
cannot be combined with other conditions.

3.10 Transformations
Transformations are special rules that modify the key or map value. Syntax of transforma-
tion rules is:

dispatch cond-list transform key-or-map dbname

where cond-list is a condition list, as described in the previous section, key-or-map is ‘key’
if the transformation is applied to the key value and ‘map’ if it is applied to the map name,
and dbname is the name of a database that handles the transformation. For example:

dispatch key like <*> transform key dequote

This rule applies the ‘dequote’ database to any key that is enclosed in angle brackets.
It is supposed that the ‘dequote’ database removes the brackets. It may be implemented
using the the ‘sed’ module (see Section 6.7 [sed], page 39), as follows.

module sed sed
database dequote sed extended ’s/<(.*)>/\1/g’
The transform rules can be chained, as in the example below:

This database removes domain part from its argument.
database localpart sed ’s/@.*$//’

Dispatch rules:

dispatch key like <*> transform key dequote
dispatch key like *@x transform key localpart
dispatch default database getpwnam

As a result, the ‘getpwnam’ database will get the local part of the original key (which
may be supplied in the form of an email address).

3.11 Smapd Exit Codes

The following table summarizes exit codes used by smapd. For each code it lists its decimal
number, symbolic name from the sysexits.h header file, and its meaning.

16

Code

64
69
78

Name

EX_OK

EX_USAGE
EX_UNAVAILABLE
EX_CONFIG

Smap Manual

Meaning

Normal termination.

Command line usage error.

Some other error occurred.

Errors in configuration file detected.

Chapter 4: Command Line Syntax 17

4 Command Line Syntax

Most command line options have two forms, called short and long forms. Both forms are
absolutely identical in function; they are interchangeable.

The short form is a traditional form for UNIX utilities. In this form, the option consists
of a single dash, followed by a single letter, e.g. —c.

Short options which require arguments take their arguments immediately following the
option letter, optionally separated by white space. For example, you might write -f name,
or -fname. Here, -f is the option, and name is its argument.

Short options’ letters may be clumped together, but you are not required to do this.
When short options are clumped as a set, use one (single) dash for them all, e.g. -cvl is
equivalent to —c -v -1. However, only options that do not take arguments may be clustered
this way. If an option takes an argument, it can only be the last option in such a cluster,
otherwise it would be impossible to specify the argument for it. Anyway, it is much more
readable to specify such options separated.

The Iong option names are probably easier to memorize than their short counterparts.
They consist of two dashes, followed by a multi-letter option name, which is usually selected
to be a mnemonics for the operation it requests. For example, —-verbose is a long option
that increases the verbosity of a utility. In addition, long option names can abbreviated,
provided that such an abbreviation is unique among the options understood by a given
utility. For example, if a utility takes options --foreground and --forward, then the
shortest possible abbreviations for these options are ——fore and --forw, correspondingly.
If you try to use —-for, the utility will abort and inform you that the abbreviation you use
is ambiguous, so it is not clear which of the options you intended to use.

Long options which require arguments take those arguments following the option name.
There are two ways of specifying a mandatory argument. It can be separated from the
option name either by an equal sign, or by any amount of white space characters. For
example, if the --file option requires an argument, and you wish to supply name as its
argument, then you can do so using any of the following notations: ——~file=name or --file
name.

The following table summarizes the options available for smapd. For each option a brief
description is given and a cross reference is provided to more in-depth explanation in the
body of the manual.

-c file

--config=file
Read configuration from file, instead of the default /etc/smapd.conf. See
Chapter 3 [-config], page 7.

-t

--lint Test configuration and exit with code ‘0’ if the file parsed without errors and ‘78’
otherwise. Any errors found are reported on the standard error. See Chapter 3
[-lint], page 7.

-f

-—foreground

Do not detach from the controlling terminal, operate in foreground.

18 Smap Manual

-e
--stderr Output diagnostic to stderr. See Section 3.2 [logging], page 8.

-1
--syslog Output diagnostic to syslog (default). See Section 3.2 [logging], page 8.

-s

--single-process
Operate in single-process mode. This option is intended to help in debugging
smapd. Do not use it in production environment!

-i

--inetd Operate in inetd mode (see [inetd-mode], page 7).

-T

--trace Trace queries and replies. See Section 3.3 [Query traces|, page 8.

-p pattern
--trace-pattern=pattern
Trace only queries that begin with the given pattern. See [trace-pattern], page 8.

-d level

-x level

—--debug=1level
Set debug verbosity level. See Section 3.3 [Debugging information|, page 8. The
-x alias is for compatibility with version 1.0 and will be removed in subsequent
releases.

-L
--log-tag=tag
Set syslog tag. See Section 3.2 [logging], page 8.
-F facility
--log-facility=facility
Set syslog facility. See Section 3.2 [log-facility], page 8.
-h
--help Give a concise summary of the command line options.
--usage Give a short usage reminder.
-V
--version
Print program version.

Chapter 5: Smapd Configuration File 19

5 Smapd Configuration File

The smapd configuration file consists, on a lexical level, of logical lines. A logical line is any
sequence of characters between two unescaped newline characters. The word ‘unescaped’
means a newline character not preceded by a single backslash. Thus, escaped newlines allow
to combine several physical lines into a single logical one.

Within a logical line, unescaped ‘#’ character introduces a comment. The character itself
and the rest of characters after it up to the end of line are ignored.

Empty lines are ignored as well.

Each not empty line constitutes a configuration statement. Before further processing
the statement is subject to the following expansions:

variable substitution
Variable substitution consists in replacing each sequence ‘$name’ or ‘${name}’
with the value of the variable name. Valid variable names begin with a letter
of the Latin alphabet or underscore and consist of alphanumeric symbols and
underscores. Variable names are case-sensitive. Variables are expanded in un-
quoted and doubly-quoted arguments. Variable expansion is suppressed within
single-quoted strings (see below).

field splitting
A word is defined as any contiguous sequence of non-whitespace characters
or any sequence of characters enclosed in double or single quotes. Standalone
words and doubly-quoted strings are subject to variable substitution and escape
expansion.

escape expansion
A backslash character introduces an escape sequence. The following escape
sequences are expanded:

Sequence Replaced with

\a Audible bell character (ASCII 7)

\b Backspace character (ASCII 8)

\f Form-feed character (ASCII 12)

\n Newline character (ASCII 10)

\r Carriage return character (ASCII 13)

\t Horizontal tabulation character (ASCII 9)
\v Vertical tabulation character (ASCII 11)

Table 5.1: Escape sequences

A “\” followed by any character not listed in the table above is replaced with that
character alone. This allows, for example, to include double-quote characters
in a doubly-quoted string.

quote removal
This stage consists in removing unescaped single and double quotes, which
where not inserted due to variable expansion.

If, after expansion, the statement consists of a single word that begins with a valid
variable name immediately followed by an equals sign, such statement is treated as a variable

20 Smap Manual

assignment. The string to the right of the equals sign is assigned to the variable named to
the left of it.

Otherwise, if the statement has two or more words, the first word is treated as a keyword,
which identifies a configuration statement, and the rest of words as its arguments.

The following configuration statements are understood.

inetd-mode bool [Config]
If bool is ‘yes’, enable inet mode (see [inetd-mode], page 7).

pidfile filename [Config]
Write pidfile to the file filename.

foreground bool [Config]
If bool is ‘yes’, run in foreground. This also means that log output goes to stan-
dard error, unless requested otherwise by ‘log-to-syslog’ statement or --syslog
command line option.

idle-timeout number [Config]
Sets idle timeout to number seconds. A child process terminates if it has not received
any request within this amount of time.

log-to-stderr bool [Config]
If bool is ‘yes’ send log output to standard error.

log-to-syslog bool [Config]
If bool is ‘yes’ send log output to syslog.

log-tag string [Config]
Tag each log line in syslog with string. By default, the name of the program (‘smapd’)
is used.

log-facility fac [Config]

Write logs to the syslog facility fac. Valid values for fac are: ‘user’, ‘daemon’, ‘auth’,
‘authpriv’, ‘mail’, ‘cron’, and ‘localO’ through ‘local7’.

Default is ‘daemon’.

debug dspecl [dspec?...] [Config]
Enable debugging output according to the given specifications. See Section 3.3 [de-
bugging], page 8, for a description of specifications.

trace bool [Config]
If bool is ‘yes’ enable query traces. See Section 3.3 [debugging], page 8.

trace-pattern patl [pat2...] [Config]
Abridge query trace output to queries beginning with the given patterns. See [trace-
pattern], page 8.

user name [Config]
After startup, switch to UID and GID of the user name.

Chapter 5: Smapd Configuration File 21

group namel [name?2 ...| [Config]
When switching to user privileges (see above), retain also these supplementary groups.

allgroups bool [Config]
When switching to user privileges (see above), retain all supplementary groups the
user is a member of.

socket-mode mode [Config]
Set default file mode for creating UNIX sockets. The mode argument must be either
in octal notation (e.g. ‘600’), or in chmod-style notation (e.g. ‘rw-------).

Default mode is ‘600°.

shutdown-timeout seconds [Config]
Sets the number of seconds to wait for all children to terminate before shutdown, after
sending them the ‘SIGTERM’ signal. Any children remaining active after this timeout
are terminated forcefully using ‘SIGKILL’.

Default value is 5 seconds.

backlog number [Config]
Sets the maximum size of pending connections queue for sockets. If a connection
request arrives when the queue is full, the client receives an error with an indication
of ‘ECONNREFUSED’.

Default backlog is 8.

reuseaddr bool [Config]
If bool is ‘yes’ reuse existing socket addresses (both INET and UNIX). This is the
default.

max-children number [Config]

Maximum number of children processes allowed to run simultaneously. When the ac-
tual number of children reaches number, the server stops refusing further connections
until any of them terminates. The value of ‘0’ means ‘unlimited’.

The default limit is ‘128’.

single-process bool [Config]
Operate in single-process mode. This option may be necessary only when debugging
smapd. Never use it in production environment!

server name address [block] [Config]
Configure a server. The name argument gives its symbolic name, which will be used
in logs to identify it. The address argument specifies network address to listen on.
As of version 2.1 two kind of addresses are recognized:

inet://ip:port
Listen on the IPv4 address ip, on the given port. IP address may be given
either in “dotted-quad” form or as a hostname. Port may be specified
either as a port number, or as a name of a service from /etc/services.

22 Smap Manual

unix://pathname
Listen on the UNIX socket pathname. Notice that the name of the
socket must be absolute, so you would usually have three slashes to-
gether. For example, the following statement will listen on a socket named
/var/run/smap.sock:

server main unix:///var/run/smap.sock
Optional block is a block statement consisting of the word ‘begin’ followed by a

newline, one or more configuration statements and the word ‘end’ alone on a line.
For example:

server main unix:///var/run/smap.sock begin
user smap
allgroups yes

end

The statements within block apply only to that particular server. That is, in the
example above, the connections requested on the server main will be handled by a
subprocess with privileges of the user smap, retaining all the supplementary groups
of this user. The following statements are allowed for use in the block statement:

e allgroups

e backlog

e group

e max-children
e reuseaddr

e single-process
e user

e socket-mode

e socket-owner

Their meaning is the same as of the corresponding statements in global scope (see
above), but applies to that particular server only.

load-path path [Config]
Add path to the current set of directories searched for module files. Path is a list of
directory names separated by colons.

module modname libname [args...] [Config]
Declare new module. Arguments are:

modname A name which uniquely identifies this module in the configuration. It will
be used to associate databases with this module.

libname Name of the shared library file (without suffix) to load.

args... Arguments to the module initialization function.

database dbname modname [args...] [Config]
Define a database dbname and associate it with the module modname, which must
be loaded by a prior module statement. Optional args are passed to the database
initialization function verbatim.

Chapter 5: Smapd Configuration File 23

dispatch cond target [Config]
Dispatch incoming queries.

Cond is a list of conditions that must be satisfied in order to dispatch this query to
target. Conditions are separated by any amount of whitespace. They are evaluated
from left to right and are joined using boolean ‘AND’ so that cond yields ‘True’ only
if all conditions evaluate to ‘True’. Supported conditions are:

from ipaddr [Condition]
Returns ‘True’ if the IP address of the client equals ipaddr. The latter may be
given either as an IP address or as a host name, in which case it will be resolved
and the first of its IP addresses will be used.

from ipaddr/netmask [Condition]
Returns ‘True’ if the result of logical ‘AND’ between the client IP address and
netmask equals to ipaddr. The network mask must be specified in “dotted
quad” form, e.g.:

from 10.1.10.1/255.255.255.224

from ipaddr/netlen [Condition]
Returns ‘True’ if first netlen bits from the client IP address equal to ipaddr.
The network mask length, netlen must be an integer number in the range from
0 to 32. The address part, ipaddr, is as described above. For example:

from 10.1.10.1/27

server name [Condition]
‘True’ if this query is being served by server name (see [config-server|, page 21).

map op string [Condition]
‘True’ if the map name part of the query (see Appendix B [Protocol], page 55)
matches string. The op part specifies the comparison algorithm:

€q
is Literal equality. Map name must be exactly the same as string.
like
fnmatch ~ Match using shell wildcard patterns (see Section “glob” in Glob(7)
man page).
regexp Match using regular expressions. String must have the following
form:
/expr/flags

The slashes may be uniformly replaced with any other punctuation
character. The expr must constitute a valid regular expression.
The flags are optional. When given, they allow to control the type
of the regular expression:

Flag Meaning
i Use case-insensitive matching
X expr is an extended regular expression. This is the default setting.

24

Smap Manual

b expr is a basic regular expression.

See Section “Extended regular expressions” in GNU sed, for a de-
scription of Extended regular expressions.

key op string [Condition]
‘True’ if the key value (see Appendix B [Protocol], page 55) matches string.
The op argument has the same meaning as for map above.

not cond [Condition]
Reverts the value returned by cond, which is one of the conditions described
above. For example:

not map like "localx"

default [Condition]
Always ‘True’. This must be the only condition in cond. It is useful to declare
default query destination.

The target instructs the server to direct this query to a particular database. The
syntax is:

database dbname [Target]
Pass this query to the database dbname (see [config-database], page 22).

Chapter 6: Modules Shipped with Smap 25

6 Modules Shipped with Smap

Smap is shipped with a set of loadable modules, which are installed in its default module di-
rectory, $prefix/1ib/smap. The modules are configurable on a per-module (see Section 3.7
[loadable modules], page 12), and per-database (see Section 3.8 [databases], page 13) levels.

Smap version 2.1 is shipped with several modules, which are described in detail in the
following sections.

6.1 Echo

The echo module is the simplest of all modules. It sends back a static reply string, no matter
what the query was. This module is useful for default databases, which catch erroneous or
not handled queries.

Loading

The module needs no additional arguments for initialization. Normal loading statement is:

module echo echo

Database

Database initialization function treats its arguments as a string to be sent in reply to all
queries. An example database definition:

database default echo NOTFOUND [no such map]
Such a definition is normally used as a target of the ‘default’ dispatch rule:
dispatch default database default

6.2 Mailutils

This module uses GNU Mailutils (http://www.gnu.org/software/mailutils) and pro-
vides two main modes:

‘auth’ This mode uses GNU Mailutils authorization mechanism to obtain user data
(similar to the system ‘getpwnam’ routine) and returns positive reply if the data
were retrieved and negative reply otherwise. See Appendix A [MeTA1], page 51,
for an example on how to use it as a local user and alias database.

9y

This mode allows to check whether the user’s mailbox exceeded the allotted
quota, and if not, whether it is able to accept a message of the given size
without exceeding it. The mode name is an abbreviation of Mailbox Quota.

‘mbq

6.2.1 Variable Expansion

In the discussion below we often refer to meta-variable expansion in strings. This is a
process, whereby any sequence ‘${variable}’ is replaced with the value of variable. The
defined variables are:

db The database name.
map The map name.

key The lookup key.

http://www.gnu.org/software/mailutils

26

diag

name

passwd

uid

gid

gecos

dir
shell

mailbox

quota

mbsize

msgsize

Smap Manual

If the key was not found or some error occurred, this variable expands to a short
diagnostics string, suitable for return message. Otherwise, expands to empty
string.

The ‘name’ field from the retrieved record. Empty string if the user not found.

The ‘passwd’ field from the retrieved record. Empty string if the user not found.

The ‘uid’ field from the retrieved record. If the user was not found, expands to
4_17'

The ‘gid’ field from the retrieved record. If the user was not found, expands to
-1,

The ‘gecos’ field from the retrieved record. Empty string if the user not found.

The ‘dir’ field from the retrieved record. Empty string if the user not found.
The ‘shell’ field from the retrieved record. Empty string if the user not found.

The ‘mailbox’ field from the retrieved record. Empty string if the user not
found.

The ‘quota’ field from the retrieved record. If the user was not found, expands
to ‘NONE’.

Mailbox size, in bytes. Defined only in ‘mbq’ mode.

Expected message size, in bytes. Defined only in ‘mbq’ mode.

6.2.2 Mailutils Loading Sequence

module mailutils mailutils [args]

Arguments are:

config-verbose

Verbosely trace the processing of the main Mailutils configuration files.

config-dump

Dump the parse tree from the Mailutils configuration.

positive-reply=str

Declare default positive reply string. This string is returned when the under-
lying database was able to found the requested key. Prior to returning, str is
subject to meta-variable expansion, as described above.

Default positive reply string is ‘0K’.

negative-reply=str

Declare default negative reply string. This string is returned when the underly-
ing database failed to found the requested key. Prior to returning, str is subject
to meta-variable expansion.

Default negative reply string is ‘NOTFQUND’.

Chapter 6: Modules Shipped with Smap 27

onerror-reply=str
Declare a reply to be returned on error. Prior to returning, str is subject to
meta-variable expansion. Default string is ‘NOTFOUND’.

The module reads most of its configuration settings from the main Mailutils configura-
tion file. See Section “configuration” in GNU Mailutils Manual, for a description of GNU
Mailutils configuration system. It looks for smap-specific settings in the section ‘program
smap-mailutils’.

Statement Reference

server See Section “Server Settings” in GNU Mailutils
Manual.

auth See Section “Auth Statement” in GNU Mailutils
Manual.

pam See Section “PAM Statement” in GNU Mailutils
Manual.

virtdomain See Section “Virtdomain Statement” in GNU Mailu-
tils Manual.

radius See Section “Radius Statement” in GNU Mailutils
Manual.

sql See Section “SQL Statement” in GNU Mailutils
Manual.

ldap See Section “LDAP Statement” in GNU Mailutils
Manual.

debug See Section “Debug Statement” in GNU Mailutils
Manual.

logging See Section “Logging Statement” in GNU Mailutils
Manual.

include See Section “Include” in GNU Mailutils Manual.

The module uses GNU Mailutils authorization databases to obtain the requested data.
This concept is described in detail in Section “Auth Statement” in GNU Mailutils Manual.

6.2.3 Mailutils Databases

Mailutils databases are normally declared as follows:
database name mailutils mode=mode [args]

Here, name is the database name, mode is ‘auth’ if the database should work in auth
mode, and ‘mbq’ if it should run in mbq mode. If the ‘mode’ argument is omitted, ‘auth’ is
assumed. Optional args may be used to supply additional database configuration. These
are:

positive-reply=str
Declare positive reply string. This string is returned when the underlying data-
base was able to found the requested key. Prior to returning, str is subject to
meta-variable expansion, as described above.

Default positive reply string is ‘OK’, unless overridden by the module-level
positive-reply option (see Section 6.2.3 [db-mailutils|, page 27.

28 Smap Manual

negative-reply=str
Declare negative reply string. This string is returned when the underlying
database failed to found the requested key. Prior to returning, str is subject to
meta-variable expansion.

Default negative reply string is ‘NOTFOUND’, unless overridden by the module-
level positive-reply option (see Section 6.2.3 [db-mailutils], page 27.

onerror-reply=str
Declare a reply to be returned on error. Prior to returning, str is subject to
meta-variable expansion. Default string is ‘NOTFOUND’, unless overridden by the
module-level positive-reply option (see Section 6.2.3 [db-mailutils|, page 27.

6.2.4 Mailutils Auth Mode

Mailutils module in ‘auth’ mode uses GNU Mailutils authorization mechanism to obtain
user data. It returns ‘positive-reply’ if the data were retrieved and ‘negative-reply’
otherwise. This mode is often used for databases of local users and aliases. The key is
normally a user name (either local part or fully qualified).

6.2.5 Mailutils MBQ Mode

MBQ, or Mailbox Quota mode, uses key as the name of a local user. It obtains the user
parameters via Mailutils authorization mechanism and then switches to this user privileges
and opens his mailbox for a brief period of time. After opening it determines the mailbox
size and closes it. The mode returns ‘positive-reply’ if the mailbox size is less than the
quota, and ‘netagive-reply’ otherwise.

If the key value consists of two words, separated by whitespace, then the first word
is used as a user name, and the second one as a size of a message which is about to be
delivered to that user’s mailbox (the size may be optionally prefixed by ‘SIZE=’). In this
case, ‘positive-reply’ is returned if the actual mailbox size plus the message size is less
than quota.

Two additional meta-variables may be used in reply templates to return quota-related
information:
mbsize Mailbox size, in bytes. Defined only in ‘mbgq’ mode.
msgsize Expected message size, in bytes. Defined only in ‘mbq’ mode.

The following example shows a definition of ‘mbq’ database which the author uses on his
servers:

database mbq mailutils mode=mbq \
positive-reply="0K [${diag}] ${mailbox} ${mbsize} ${quotal}"\
negative-reply="NOTFOUND [${diag}] ${mailbox} ${mbsize} ${quotal}"\
onerror-reply="NOTFOUND [${diag}]"

The ‘diag’ meta-variable contains a diagnostic string suitable for passing it back to the
MTA. For example, in the case of ‘negative-reply’, ‘${diag}’ expands to:

mailbox quota exceeded for this recipient

if the mailbox has grown beyond the allowed quota, and

Chapter 6: Modules Shipped with Smap 29

message would exceed maximum mailbox size for this recipient
if message of the given size cannot be delivered to mailbox without violating its quota.
Notice, that this mode requires superuser privileges.

6.3 Guile

Guile is an acronym for GNU’s Ubiquitous Intelligent Language for Extensions. It pro-
vides a Scheme interpreter conforming to the R5RS language specification and a number of
convenience functions. For information about the language, refer to Revised(5) Report on
the Algorithmic Language Scheme. For a detailed description of Guile and its features, see
Section “Overview” in The Guile Reference Manual.

The guile module provides an interface to Guile which allows for writing Smap modules
in Scheme. The module is loaded using the following configuration file statement:

module name guile [args]
Optional args are:

debug Enable Guile debugging and stack traces.
nodebug Disable Guile debugging and stack traces (default).

load-path=path
Append directories from path to the list of directories which should be searched
for Scheme modules and libraries. The path must be a list of directory names,
separated by colons.

This option modifies the value of Guile’s %load-path variable. See Section
“Configuration Build and Installation” in The Guile Reference Manual.

init-script=script
Specifies the name of a Scheme source file that must be loaded in order to
initialize the module. The file is looked up using ‘%load-path’ variable.

init-args
The init-args parameter supplies additional arguments to the module. They
will be accessible to the script via the command-line function.

init-fun This parameter specifies the name of a function that will be invoked to perform
the initialization of the module and of particular databases. Default name is
‘init’. See Section 6.3.3 [Guile Initialization|, page 31, for a description of
initialization sequence.

Guile databases are declared using the following syntax:

database dbname modname [args] [cmdline]

where: dbname gives the name for this database and modname is the name given to
Guile module in module statement (see above).

Optional args override global settings given in the module statement. The following
options are understood: init-script, init-args, and init-fun. Their meaning is the
same as for module statement (see above), except that they affect only this particular
database.

Any additional arguments, referenced as cmdline above, are be passed to the Guile
open-db callback function (see [open-db], page 31).

30 Smap Manual

6.3.1 Virtual Functions

Any database handled by guile module is associated with a virtual function table. This
table is an association list which supplies to the module the Scheme call-back functions
implemented to perform particular tasks on that database. In this list, the car of each
element contains the name of a function, and its cdr gives the corresponding function. The
defined function names and their semantics are described in the following table:

init Initialize the module.

done Close the module, releasing any resources held by it.

open Open the database.

close Close the database.

query Handle a socket map query

xform Handle a transformation request (see Section 3.10 [transformations|, page 15).

For example, the following is a valid virtual function table:

(1ist (cons "open" open-module)
(cons "close" close-module)
(cons "query" run-query))

Apart from per-database virtual tables, there is also a global virtual function table,
which is used to supply the entries missing in the former. Both tables are created during
the module initialization, as described in the next subsection.

Particular virtual functions are described in Section 6.3.4 [Guile API], page 31.

6.3.2 Guile Output Ports

Guile modules are executed in a specially prepared environment. Current error port is
redirected so that everything written to it ends up in the smapd error stream. So, if smapd
is writing its log to syslog, everything you write to ‘ (current-error-port)’ will be written
to syslog as well. The port is line-buffered. For example, the following code:
(with-output-to-port
(current-error-port)
(lambda ()

(display "The diagnostics follows:")

(newline)

(display "Module opened")

(newline)))

will result in two lines in your syslog file, which will look like

Jun 19 12:49:05 netbox smapd[7503]: The diagnostics follows
Jun 19 12:49:05 netbox smapd[7503]: Module opened

For any debugging output, use smap-debug-port. This port is configured so that ev-
erything written to it is explicitly marked as being debug output. If smapd logs to stderr,
it will be prefixed with ‘DEBUG:’, and if it logs to syslog, the output will be logged with
‘LOG_DEBUG’ priority.

Finally, current output port is closed for any functions, excepting ‘query’ (see [query-db],
page 32). For ‘query’ function, it is redirected so that anything written to it is reformatted

Chapter 6: Modules Shipped with Smap 31

according to the socket map protocol (see Appendix B [Protocol], page 55) and sent back
as a reply to the client.

6.3.3 Guile Initialization

The module configuration statement causes loading and initialization of the guile module:

module modname guile [init-script=script] \
[init-fun=function"]

Upon module initialization stage, the module attempts to load the file named script.
The file is loaded using primitive-load-path call (see Section “Loading” in The Guile
Reference Manual), i.e. it is searched in the Guile load path. The init-fun parameter
supplies the name of the initialization function. This Scheme function returns virtual func-
tion tables for the module itself and for each database that uses this module. It must be
declared as follows:

(define (function arg)

>

This function is called several times. First of all, it is called after script is loaded. This
time it is given #f as its argument, and its return value is saved as a global function table.
Then, it is called for each database statement that uses module modname (defined in the
module statement above), e.g.:

database dbname modname ...

This time, it is given dbname as its argument and its return is stored as the virtual
function table for this particular database.
The following example function returns a complete virtual function table:
(define (my-smap-init arg)
(1ist (cons "init" db-init)
(cons "done" db-done)
(cons "open" db-open)
(cons "close" db-close)
(cons "query" db-query)
(cons "xform" db-xform)))

6.3.4 Guile API

This subsection describes callback functions that a Guile database module must provide.
The description of each function begins with the function prototype and its entry in the
virtual function table.

open-db name . args [Guile Callback]
Virtual table: (cons "open" open-db)

Open the database. The argument name contains database name as given in dbname
of the database declaration (see Section 3.8 [databases|, page 13). Optional argu-
ment args is a list of command line parameters obtained from cmdline in database
statement (see [guile-cmdline|, page 29). For example, if the configuration file con-
tained:

32 Smap Manual
database foo guile db=file 1 no
then the open-db callback will be called as:
(open-db "foo" ’("db=file" "1" "no"))
The open-db callback returns a database handle, i.e. an opaque Scheme object which
identifies this database, and keeps its internal state. This value, hereinafter named
dbh, will be passed to another callback functions that need to access the database.
The unspecified return value indicates an error.
close-db dbh [Guile Callback]
Virtual Table: (cons "close" close-db)
Close the database. This function is called during the cleanup procedure, before
termination of smapd child process. The argument dbh is a database handle returned
by open-db.
The return value from close-db is ignored. To communicate errors to the daemon,
throw an exception.
query-db dbh map key . rest [Guile Callback]
Virtual Table: (cons "close" close-db)
Perform the query. Arguments are:
dbh A database handle returned by open-db.
map The map name.
key The lookup key.
rest If this query came over a UNIX socket, this argument is ‘()’. Otherwise,
if the query came over an INET socket, rest is a list of two network socket
addresses (see Section “Network Socket Address” in The Guile Reference
Manual): first element is the address of the remote party (client), second
element is the address of the server that is handling the query.
This function must write the reply, terminated with a newline, to the current output
port, e.g.:
(define-public (smap-query handle map arg . rest)
(display "NOTFOUND")
(newline))
xform-db dbh arg . rest [Guile Callback]

Virtual Table: (cons "xform" xform-db)
Transform the argument arg. Arguments dbh and rest have the same meaning as in
[query-db], page 32.

Returns transformed value or ‘#f’ if no transformation applies. This callback may be
used to alter map or key values using ‘guile’ module (see Section 3.10 [transforma-
tions|, page 15). The following example function removes optional domain part from
its argument:

Chapter 6: Modules Shipped with Smap 33

(define (smap-xform handle arg . rest)
(let ((arg-parts (string-split arg #\@)))
(if (null? (cdr arg-parts))
#1
(car arg-parts))))

The following snippet from the smapd.conf file shows how to apply it:

database localpart guile init-script=local.scm

dispatch key like *@* transform key localpart

6.4 Mysql

The mysql module provides interface to MySQL database management system. It may be
used to build smap databases over SQL ones.

The SQL database to use may be configured either globally, when loading the module,
or locally, when defining a smap database. If a database definition lacks SQL configuration
statements, then it attempts to use a globally defined connection.

Each database is configured with a SQL query template, and a set of smap reply tem-
plates to use. When dispatched a sockmap query, the database expands the SQL query
template using the actual values of ‘${map}’ (the map name) and ‘${key}’ (the key value)
and sends the expanded query to the MySQL server. If the server responds with a non-
empty set of tuples, the positive reply template is expanded and the result is used as a
response. Otherwise, if the query produced an empty set, the smap database uses the
negative reply template to create the response.

6.4.1 MySQL Configuration
The SQL database is configured using the following options:

config-file=file
Set the name of the MySQL configuration file to read. By default /etc/my. cnf
is used.

config-group=name
Set the name of the group in the MySQL configuration file, from where to read
the configuration options.

The statements above allow to keep all security-sensitive information, such as MySQL
username and password, in an external configuration file and thus to relax permission
requirements for smapd.conf. For a detailed description of the format of such external
configuration file (or option file in ‘MySQL’ parlance), see Section “option-files” in MySQL
Manual.

In case the use of option files is not feasible for some reason, you may specify MySQL
connection and database parameters in smapd.conf when loading the mysql module or
defining a smap database. The following options are used to define MySQL connection
parameters:

host=hostname
Sets the hostname or IP address of the host running the MySQL server.

34 Smap Manual

port=n Sets port number the MySQL server is listening on. Default is 3306.

socket=file
Sets the socket name, if the server is listening on a UNIX socket.

ssl-ca=file
Sets the pathname to the certificate authority file, if you wish to use a secure
connection to the server via SSL.

Notice, that either host and, optionally, port or socket must be used. Specifying both
is senseless.

MySQL database and user credentials are defined using the following options:

database=name
Sets the name of the MySQL database to use.

user=name
Sets MySQL user name.

password=string
Sets the password for accessing the MySQL database.

When using these options, it is reasonable to tighten the permissions on smapd.conf so
that no third person could see the MySQL password. The recommended permissions are
‘0600’.

6.4.2 MySQL Query and SMAP Replies
MySQL query is defined using the following option:

query=template
Define MySQL query template.

The template may reference the following variables:

Variable Meaning
map Name of the map being queried
key Lookup key

Table 6.1: MySQL query template variables
For example:
database alias mysql \
query="SELECT alias FROM aliases WHERE email=’$key’"
If the database definition lacks the query option, it will attempt to use one from the
module statement. If the module statement lacked it as well, an error is reported.

Reply templates define the responses to be given. They are given by the following
options:

positive-reply=template
Defines a reply to be sent if the query returned a non-empty set of tuples. In
addition to the variables described above (see Table 6.1), the template may also
refer to the MySQL result columns, by using their names from the ‘SELECT’ part
of the query. For example:

Chapter 6: Modules Shipped with Smap 35

database alias mysql \
query="SELECT alias FROM aliases WHERE email=’$key’" \
positive-reply="0K $alias"
The default positive-reply is ‘0K’.

negative-reply=template
Defines a reply to be sent if the query returned an empty set of tuples. The
template may refer to the variables described in Table 6.1.

Default value is ‘NOTFOUND’.

onerror-reply=template
Defines a reply to be sent if an error occurred when executing the query. The
template may refer to the variables described in Table 6.1.

Default value is ‘NOTFOUND’.

6.5 Postgres

The postgres module provides interface to PostgreSQL database management system. It
may be used to build smap databases over SQL ones.

The module is in many regards similar to mysql module, described above. In particular,
its overall functionality is exactly the same as described in Section 6.4 [mysql|, page 33,
except, of course, that it uses PostgreSQL databases.

6.5.1 Postgres Configuration

A Postgres database is configured using a set of options understood by the Postgres
PQconnectdb function. See http: / /www . postgresql . org /docs /8 .4 /static/
libpg-connect.html, for a detailed description. The following is a short summary of the
most useful options:

host=name
Name of host to connect to. If this begins with a slash, it specifies Unix-domain
communication rather than TCP/IP communication; the value is the name of
the directory in which the socket file is stored.

hostaddr=ip
Numeric IP address of host to connect to.

port=number
Port number to connect to at the server host, or socket file name extension for
Unix-domain connections.

dbname=name
The database name.

user=name
PostgreSQL user name to connect as. Defaults to be the same as the operating
system name of the user running the smapd.

password=string
Password to be used if the server demands password authentication.

http://www.postgresql.org/docs/8.4/static/libpq-connect.html
http://www.postgresql.org/docs/8.4/static/libpq-connect.html

36 Smap Manual

connect_timeout=number
Maximum wait for connection, in seconds. Zero or not specified means wait
indefinitely.

options=string
Any additional command-line options to send to the server at run-time. For
example, setting this to ‘-~c geqo=off’ sets the session’s value of the ‘geqo’ pa-
rameter to ‘off’. For a detailed discussion of the available options, see Postgres
documentation®.

sslmode=mode
This option determines whether or with what priority an SSL. TCP/IP con-
nection will be negotiated with the server. There are six modes: ‘disable’,
‘allow’, ‘prefer’, ‘require’, ‘verify-ca’ and ‘verify-full’®.
sslcert=file
This parameter specifies the file name of the client SSL certificate.
sslkey==file-or-engine—name
This parameter specifies the location for the secret key used for the client cer-
tificate.

sslrootcert=file
This parameter specifies the file name of the root SSL certificate.

sslcrl=name
This parameter specifies the file name of the SSL certificate revocation list
(CRL).

krbsrvname=name
Kerberos service name to use when authenticating with Kerberos 5 or GSSAPI.

service=name
Service name to use for additional parameters.

6.5.2 Postgres Query and SMAP Replies

Postgres SQL query and the smap replies are configured the same way as for mysql module
(see Section 6.4.2 [MySQL Query and SMAP Replies|, page 34). The following is a short
summary:

query=template
Define the Postgres query template. The template may reference the following

variables:

Variable Meaning

map Name of the map being queried
key Lookup key

Table 6.2: Postgres query template variables

I For PostgreSQL version 8.4, see Chapter 18 in PostgreSQL Manual.
2 For PostgreSQL version 8.4, see Section 30.17 in PostgreSQL Manual.

http://www.postgresql.org/docs/8.4/static/runtime-config.html
http://www.postgresql.org/docs/8.4/static/libpq-ssl.html

Chapter 6: Modules Shipped with Smap 37

If the database definition lacks the query option, it will attempt to use one
from the module statement. If the module statement lacked it as well, an error
is reported.

positive-reply=template
Defines a reply to be sent if the query returned a non-empty set of tuples. In
addition to the variables described above (see Table 6.2), the template may also
refer to the column names from the SQL result set.

The default positive-reply is ‘0K’.

negative-reply=template
Defines a reply to be sent if the query returned an empty set of tuples. The
template may refer to the variables described in Table 6.2.

Default value is ‘NOTFOUND’.

onerror-reply=template
Defines a reply to be sent if an error occurred when executing the query. The
template may refer to the variables described in Table 6.2.

Default value is ‘NOTFOUND’.

6.6 ldap

The 1dap module provides interface to the Lightweight Directory Access Protocol. The
configuration is similar to that of SQL modules:

LDAP parameters may be configured either globally, when loading the module, or lo-
cally, when defining a smap database. If the database definition lacks some configuration
statements, it looks them up in a global definition.

Each database has a filter template and up to three smap reply templates. When
dispatched a sockmap query, the database expands the filter template using the actual
values of ‘${map}’ (the map name) and ‘${key}’ (the key value) and uses the obtained
filter to query the LDAP server. If the server responds with a non-empty set of tuples, the
positive reply template is expanded and the result is used as a response. Otherwise, if the
query produced an empty set, the smap database uses the negative reply template to create
the response.

The module gets its configuration from the file /etc/ldap.conf and from module
and database command line. The settings from the command line override those from
/etc/ldap.conf. Alternative configuration file can be specified using the config-file
option. The subsections that follow discuss the keywords meaningful for the 1dap module.
Unless explicitly stated otherwise, these can be used in the command line as well as in the
configuration file. For compatibility with other LDAP software, keywords in the configura-
tion file are case-insensitive. Unrecognized keywords appearing in the configuration file are
silently ignored. You can use the ‘1dap.2’ debug level to get a listing of those. This can be
useful to trace possible typos.

Unrecognized keywords appearing in the command line are treated as errors, as usual.
The only keyword that can be used only in the command line is config-file:

config-file=file
Read configuration from file file instead of /etc/1ldap.conf.

38 Smap Manual

6.6.1 LDAP Configuration
The following keywords configure access to the LDAP database:

base=string
Sets the default base DN for ldap operations. The base must be specified as a
Distinguished Name in LDAP format.

binddn=dn
The DN to bind as.

bindpw=password
Password for binddn.

bindpwfile=file
Read password from file. This is a safer alternative to bindpw.

tls-cacert=file
tls_cacert=file
Read TLS Certificate Authority from file.

uri=string

Specifies the URI of LDAP server to connect to. Multiple URIs are allowed.
Each URI is ‘scheme://[name[:port]]’. The scheme part is one of: ‘ldap’,
meaning LDAP over TCP (default port 389), ‘1daps’, meaning LDAP over SSL
(TLS) (default port 636), or ‘ldapi’, meaning LDAP over UNIX socket. For
‘l1dap’ and ‘ldaps’, name is the host name or IP address of the remote server.
Optional port specifies the TCP port to use instead of the default one. For
‘ldapi’, name is the pathname of the UNIX socket and port is not used. Note,
that directory separators must be URL-encoded (using ‘%2F’ instead of /).

6.6.2 LDAP Filter and SMAP Replies
The following keywords configure LDAP lookups and replies.

join-delim=string
When constructing a reply, join multiple occurrences of LDAP attribute with
string. If this parameter is not defined, only first attribute will be returned.

filter=pattern
Specifies LDAP filter. The pattern can use the usual variables (see Section 6.2.1
[expansion], page 25). For example:

database user ldap filter=(&(objectClass=posixAccount) (uid=$key))

There is no default for this option, so it is mandatory.
Replies are configured via the following three keywords:

positive-reply=reply
Defines a positive reply string. It is used when the LDAP lookup using the
defined filter returned one or more objects. Only the first returned object is
used. The reply string can contain the basic smap variables ‘$db’, ‘$map’, and
‘$key’. It can also refer to values of any attribute from the returned object
using the variable notation. For example:

Chapter 6: Modules Shipped with Smap 39

positive-reply="0K $uid"
returns the string ‘0K’ followed by the value of the uid attribute.
The default positive reply string is ‘0K’.
negative-reply=reply
Defines the negative reply string, which is used when the LDAP lookup returns
empy set of objects. The reply string can contain the basic smap variables ‘$db’,
‘$map’, and ‘$key’.
The default negative reply string is ‘NOTFOUND’.
onerror-reply=reply
Defines the string to be returned if the LDAP lookup fails. The reply argument
can contain the basic smap variables ‘$db’, ‘$map’, and ‘$key’.

The default value is ‘NOTFOUND’.

6.7 Sed

The ‘sed’ module applies sed-like s-expressions to strings in order to modify them. It is
designed mainly for use in transformation rules (see Section 3.10 [transformations|, page 15).
6.7.1 Loading sed module
module sed sed [args]

The following arguments may be given in the statement above:
icase Use case-insensitive expressions.
noicase Use case-sensitive expressions. This is the default.
extended Use extended regular expressions. This is the default.

noextended
Use basic regular expressions.

Although sed module is designed for transformations in the first place, it may also be
used as a conventional lookup database (see Section 6.7.4 [sed lookups|, page 40). The
following options modify its behavior in this mode:

positive-reply=str

Use str for positive replies.
negative-reply=str

Use str for negative replies.

onerror-reply=str
Reply with str if an error occurred.

6.7.2 Defining Sed Databases
The definition of a sed databases requires a single argument: the s-expression to be applied.
For example:

database dequote sed ’s/<(.*)>/\1/g’

Be sure to properly quote the expression, especially if it contains backreferences. It is
preferable to use single quotes, to avoid duplicating each backslash in the expression, as

40 Smap Manual

shown in the example below. If the expression itself contains single quote, you may either
use double-quotes to quote the entire expression:

database foo sed "s/’utf8’ (.x)/u8_\\1/"

or use escaped single quotes outside of quoted expression (a technique familiar for shell
programmers):

database foo sed ’s/’\’’utf8’\’’(.x)/u8_\1/’

All options valid for module initialization (see Section 6.7.1 [sed module], page 39) may
also be used in database declarations. When used so, they take precedence over module ini-
tialization options. For example, the following database definition uses basic case-insensitive
regular expressions:

database bar sed noextended noicase ’s/test(\([")I\))/\1/g’

6.7.3 S-expressions
The transformation expression is a sed-like replace expression of the form:
s/regexp/replace/ [flags]

where regexp is a regular expression, replace is a replacement for each part of the input
that matches regexp. Both regexp and replace are described in detail in Section “The ‘s’
Command” in GNU sed.

As in sed, you can give several replace expressions, separated by a semicolon.

Supported flags are:

‘g’ Apply the replacement to all matches to the regexp, not just the first.
‘i’ Use case-insensitive matching
‘x’ regexp is an extended regular expression (see Section “Extended regular ex-

pressions” in GNU sed).

‘number’ Only replace the numberth match of the regexp.

Note: the POSIX standard does not specify what should happen when you mix
the ‘g’ and number modifiers. The sed module follows the GNU sed implemen-
tation in this regard, so the interaction is defined to be: ignore matches before
the numberth, and then match and replace all matches from the numberth on.

Any delimiter can be used in lieue of ‘/’, the only requirement being that it be used
consistently throughout the expression. For example, the following two expressions are
equivalent:

s/one/two/
s,one,two,

Changing delimiters is often useful when the regex contains slashes. For instance, it is
more convenient to write s,/,—-, than s/\//-/.

6.7.4 Using Sed for Lookups

The sed module is designed primarily for argument transformation. Nevertheless, it may
also be used to define simple look-up databases. When used in a database clause of a
dispatch rule, the module behaves as follows. The s-expression is applied to the key. If the
result differs from the input key, the ‘positive-reply’ is returned. It the result is the same

Chapter 6: Modules Shipped with Smap 41

as the input key, ‘negative-reply’ is returned. If some error occurred, ‘onerror-reply’ is
returned. The reply strings may be supplied as arguments to the database definition or to
the module loading statement. The following variables are expanded within these strings:

‘map’ The map name.
‘key’ The key value.
‘xform’ Transformed key value. This variable is not defined for ‘onerror-reply’.

Default replies are:

Reply Value
positive-reply ‘0K ${xform}’
negative-reply ‘NOTFOUND’

onerror-reply ‘NOTFOUND’

Chapter 7: Socket map client 43

7 Socket map client

The smapc program is a console-based utility for querying socket map servers. It has two
operation modes. In single query mode, the utility performs a query, displays its result and
exits immediately. In interactive mode, the utility enters a read-and-eval loop, in which it
reads queries from the keyboard, runs them, and displays obtained results on the screen.

7.1 Single Query Mode

The simplest way to use smapc utility is to invoke it as follows:
smapc -S url map key

The -S option introduces the URL of the server to query (see [smap url], page 10). The
map argument gives the name of the map to use, and the key argument supplies the search
key.

For example:

$ smapc -S unix:///var/run/smap/sockmap aliases root@example.com
OK smith dmk <rev@mail.example.org>

You can give as many map-key pairs in the command line as is necessary, the only
requirement being that the number of arguments be even:

$ smapc -S unix:///var/run/smap/sockmap aliases root@example.com users root
0K smith dmk <rev@mail.example.org>
OK root uid O

If multiple map-key pairs are given in the command line, smapc can annotate each re-
sponse with the corresponding query. Such annotations are enabled by the -a (-—annotate)
option, e.g.:
$ smapc -S unix:///var/run/smap/sockmap -a aliases root@example.com users root
aliases root@example.com: 0K smith dmk <rev@mail.example.org>
users root: OK root uid O

You may simplify the invocation if you add the URL to your initialization file, i.e. to
the file smapc reads at startup for its defaults. This file resides in your home directory and
is named .smapc. Open this file with your favorite editor, and add the following line to it:

open unix:///var/run/smap/sockmap
Now, when invoked without the -S option, smapc will use this URL by default:

$ smapc aliases root@example.com
OK smith dmk <rev@mail.example.org>

See Section 7.3 [Initialization File|, page 46, for a detailed description of this file.

7.2 Interactive Mode

If insufficient number of arguments is given in the command line, smapc enters interactive
mode. In this mode it reads commands from the standard input, executes them and displays
the results on the standard output. If the standard input is connected to a terminal, the
readline and history facilities are enabled (see Section “Command Line Editing” in GNU
Readline Library).

44 Smap Manual

When in interactive mode, smapc displays its prompt and waits for you to enter a

command. The default prompt is the name of the program, enclosed in parentheses:
(smapc) _

Depending on the first character, your input is recognized either as a smapc command,
or as a query. All smapc commands begin with a single punctuation character, called
command prefix. The default command prefix is a dot, but it can be changed using the
prefix command (see Section 7.2.1 [Command Summary|, page 45). The prefix is not a
part of the command, it is merely a means by which smapc recognizes that it has been given

a command. So, when explaining commands below, we will refer to them by their name,
without the prefix.

The most important command is ‘open’. It takes a server URL as its argument and
opens a connection to that server:

(smapc) .open unix:///var/run/smap/sockmap

Now, if you type two or more words (the first of them not starting with the command
prefix), smapc builds a query using the first word as of them is used as a map name and
the rest of them as a key. It then sends the request to the server using the socket opened
with the open command and displays the result on the standard output:

(smapc) aliases root@domain.com
OK smith dmk <rev@another.domain>

If you wish to change to another URL, give another ‘open’ command. Do not bother to
close the previously opened socket: it will be done automatically.

If you are going to send a series of queries using the same map, you will save yourself
some typing by declaring the default map, e.g.:

(smapc) .map aliases

From now on, every non-command input you give will be treated as lookup keys for that

map name, e.g.:

(smapc) root@domain.com

OK smith dmk <rev@another.domain>

(smapc) postmaster

0K root

(smapc) daemon

NOTFOUND

If you forget what map you are currently using, type the map command without argu-
ments. It will display the map name:

(smapc) .map
current map is aliases

Finally, to forget the default map and return to typing map name before the key, use
‘nomap’:
(smapc) .nomap

¢

To quit the program, type
effect.

To obtain a listing of available commands with a short description for each of them, type
‘help’ or ‘7’

.quit’. Typing end-of-file character (C-d) has the same

Chapter 7: Socket map client 45

7.2.1 Smapc Command Summary

This subsection lists all available smapc commands along with their short description and
a reference to the part of this manual where they are described in detail. The command
names are given without prefix.

annotate [bool| [smapc]
Without arguments, displays current status of annotations (see [annotation], page 43).
If bool is true, enables annotations. If it is false, disables it.

Allowed values for true are: true, t , yes, on. Allowed values for false are: false,
nil, no, off.

close [smapc]
Close previously opened connection.

debug spec [smapc]
Sets the debug level. See Section 3.3 [debugging], page 8, for a description of spec.

help [smapc]
Display short command usage summary.

history [smapc]
Prints the history of recently issued commands.

nomap [smapc]
Clear the default map name. After this command, map names must be given explicitly
with each query. See [smapc-defmap|, page 44.

map [name] [smapc]
Set the default map name. Without arguments, print the name of the map currently
in use. See [smapc-defmap], page 44.

open url [smapc]
Open connection to socket map server at the given url. See [smapc-open], page 44.

server [smapc]
Show URL of the currently opened connection.

source [ip] [smapc]
With argument, sets the source address for outgoing queries. Without argument,
displays currently used source address.

prefix [char] [smapc]
If char is given, sets it as the command prefix. If called without arguments, displays
the currently selected command prefix.

prompt [string] [smapc]
Redefines the command prompt. Without arguments, prints the current prompt.

quit [smapc]
Quits interactive mode.

46 Smap Manual

quiet bool [smapc]
This command command toggles the display of smapc startup banner. When started,
smapc prints a short list of information useful for beginning users: the program version
and warranty conditions and a command to get help, e.g.:

smapc (smap) 2.1

Copyright (C) 2010 Sergey Poznyakoff

License GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Type 7 for help summary

(smapc) _

If you find this output superfluous and useless, you can suppress it by setting
quiet yes

in your initialization file.

version [smapc]
Displays the package name and version number.

warranty [smapc]
Displays the copyright statement.

7.3 Initialization File

When you start smapc, it automatically executes commands from its initialization file, if
such file exists. This file is located in your home directory and called .smapc.

Initialization file contains a series of smapc commands, as described in Section 7.2 [Inter-
active Mode], page 43, with the only difference that no command prefix is used by default.
The ‘#’ character introduces a comment: any characters from (and including) ‘#’ up to the
newline character are ignored!.

Init files are useful to change the defaults for your smapc invocation. Consider, for
example, this init file:

Turn welcome banner off

quiet yes

Open the default connection

open inet://127.0.0.1:3145

Use ‘aliases’ as a default map

map aliases

Finally, set the custom command prefix
prefix :

Notice, that if you wish to change your command prefix, it is preferable to do it as a last
command in your init file, as shown in this example.

! The same holds true for interactive mode as well, but you will hardly need comments on a terminal.

Chapter 7: Socket map client 47

7.4 Smap Invocation

The following table summarizes the options available for smapc. For each option a descrip-
tion is given and a cross reference is provided to more in-depth explanation in the body of
the manual.

-a
--annotate
Annotate responses with the corresponding queries. see [annotation|, page 43.

-B

--batch Enable batch mode. This mode is optimized for reading input from files. The
startup banner is suppressed, editing capabilities and input history are disabled,
and input prompt is not shown. This mode is enabled automatically if smapd
detects that its standard input is not connected to a terminal.

-d spec

-X spec

--debug=spec
Set debug verbosity level. See Section 3.3 [debugging], page 8, for a detailed
description. The -x alias is for compatibility with version 1.0 and will be
removed in subsequent releases.

-h
--help Give a short summary of available command line options.
-p string
--prompt=string
Change command prompt. See [smapc-prompt], page 45.

-Q

--quiet Do not print the normal welcome banner. See [smapc-quiet], page 46.

-q

--norc Do not read initialization file. See Section 7.3 [Initialization File], page 46.
-Surl

--server=url
Connect to server at the given url. See [smapc-open|, page 44.

-s addr
—--source=addr
Set source address. See [smapc-source], page 45.

-T
--trace Enable query traces. See Section 3.3 [debugging], page 8.
--usage Display a list of available command line options.
-V
--version
Print program version and exit.

Chapter 8: How to Report a Bug 49

8 How to Report a Bug

Email bug reports to gray+smap@gnu.org.ua. Please include a detailed description of the
bug and information about the conditions under which it occurs, so we can reproduce it.
The minimal information needed is:

e Version of the package you are using.
e Compilation options used when configuring it.
e Run-time configuration (the smapd.conf file and command line options used).

e Conditions under which the bug appears.

mailto:gray+smap@gnu.org.ua

Appendix A: Example: Using smapd with MeTA1 51

Appendix A Example: Using smapd with MeTA1l

In this appendix we will show how to use the ‘mysql’ module (see Section 6.4 [mysql],
page 33) to configure local user and alias maps for MeTA1. For this purpose, we will assume
that the actual data is stored in two tables in a MySQL database. The two maps will be
served by two separate databases, each of which uses a separate configuration file.

To reduce the number of connections to the MySQL server, the MySQL database will be
opened at the module level and shared between the two smap databases. Thus, the module
initialization in smapd.conf looks like:

module mysql mysql config-group=smap

The ‘config-group’ parameter refers to a group name in the default /etc/my.cnf file
that contains information about the MySQL database and credentials for accessing it. The
following is a sample snippet from /etc/my.cnf:

[smap]

database = Mail

user = smap

password = guessme

socket = /tmp/mysql.sock

A.1 Configure local_user_map.

Let’s configure ‘local_user_map’ first. User data will be stored in the table ‘userdb’, which
has the following structure:
CREATE TABLE userdb (
user varchar(32) NOT NULL default °’°’,
mailbox text
PRIMARY KEY (user)
);
The smap database is defined as follows:
database userdb mysql \
query="SELECT user FROM userdb WHERE user=’$key’"
positive-reply=0K
The ‘defaultdb’ parameter tells it to use the default SQL database opened in the mod-
ule initialization instruction. The ‘query’ parameter supplies the SQL query to run (the
‘${key}’ variable will be expanded to the value of the actual lookup key, prior to executing
the query). Finally, ‘positive-reply’ defines the reply to give if the query returns some
tuples. The database only verifies whether the user is present or not, so no additional result
is supplied in the reply.

A.2 Configure aliases

We are going to store aliases in the table ‘aliases’ which has the following structure:

CREATE TABLE userdb (
user varchar(32) NOT NULL default ’’,
alias text
PRIMARY KEY (user)

);

52 Smap Manual

It will be served by ‘alias’ database, defined as follows:

database alias mysql \
defaultdb \
query="SELECT alias FROM aliases WHERE user=’$key’" \
positive-reply="0K $alias"
It differs from the ‘userdb’ database only in that it returns a result section with its
positive reply.

A.3 Dispatch Rules

The following rules dispatch queries based on their map names to the two databases:

dispatch map alias database aliasdb
dispatch map userdb database userdb

A.4 MeTA1l configuration

Finally we need to inform MeTAl about new maps. This is done in the file
/etc/metal/metal.conf, section ‘smar’.

First, the ‘userdb’ map:

map password { type = passwd; }

map userdb {
type = socket;
path = "/var/spool/metal/smap/userdb";
mapname = userdb;

}
map locusr {

type = sequence;

maps = { password, userdb };
}

local_user_map {
name = "locusr";
flags = { localpart, local_domains };

}

As a result, MeTA1 will look up users in the system database first, and, if that fails, in
the SQL database.

Next, the ‘aliasdb’ map:
map lum {
type = socket;
path = "/var/spool/metal/smap/userdb";
mapname = aliases;

}
map stdal { file = "aliases.db"; type = hash; }
map aliasmap { type = sequence; maps = { lum, stdal }; }
aliases {
name = aliasmap;

Appendix A: Example: Using smapd with MeTA1 53

flags = { localpart, local_domains };
}
As for ‘userdb’, this map declaration also uses two different databases. First, it asks
smapd to find the alias. If it returns a negative reply, the map falls back to the default
aliases.db database.

Appendix B: The Sockmap Protocol 55

Appendix B The Sockmap Protocol

Sockmap is a simple request/reply protocol over TCP or UNIX domain sockets. Both
requests and replies are encoded in the following manner:
len:text,
where text is the actual payload, and len is its length in bytes, as a decimal number in
ASCII representation. The colon and comma are transmitted verbatim. For example, if
text is the string ‘hello there’, then the socket map packet for transmitting it is:
11:hello there,

Sockmap requests consist of the map name and the actual lookup key, separated by a
single space character.

Replies consist of the status code and optional data, separated by a single space char-
acter.

Below we describe status codes implemented by various programs. The bracketed parts
in the ‘code’ field of the tables below indicate optional values. The brackets themselves are
not required by the protocol.

B.1 Sendmail Status Codes

Status codes understood by Sendmail are:

Code Meaning

OK [result] the key was found; result contains the looked up value.

NOTFOUND the key was not found

TEMP [reason] a temporary failure occurred; optional reason field contains
an explanatory message.

TIMEOUT [reason] same as ‘TEMP’.

PERM a permanent failure occurred

Table B.1: Sendmail Status Codes

B.2 MeTA1 Status Codes
MeTA1 further extends the protocol. The result codes it understands are:

Code Meaning

OK [result] the key was found; result contains the looked up value.

NOTFOUND the key was not found

NOMORE the key was not found, stop further search

TEMP [reason] a temporary failure occurred; optional reason field contains
an explanatory message.

TIMEOUT [reason] same as ‘TEMP’.

PERM [reason] a permanent failure occurred; optional reason field contains

an explanatory message.
Table B.2: MeTA1 Status Codes

56 Smap Manual

The ‘NOMORE’ status indicates that the key has not been found and also instructs MTA!
to stop any further searches using this key and its derivatives.

B.3 Mailfromd Status Codes

Mailfromd does not itself require any particular status codes. The allowed status codes
depend entirely on your filter program.

L' To be precise, the smar, a component responsible for resolving various things for MeTA1.

Appendix C: Debug Categories 57

Appendix C Debug Categories

The following table describes the debug categories available in the smapd server (see
Section 3.3 [debugging]|, page 8). For each category, the table gives its symbolic name,
ordinal number (in parentheses), and a short description.

Particular modules may define their own debug categories.

smap (0)

srvman (1)

module (2)

Man smap functionality. Level ‘1’ includes some mild warnings, like, e.g.
‘ignoring master privilege settings’.
Level ‘10’ enables detailed protocol traces, which look like:

C: 22:mailertable foobar.net,
S: 19:0K local:foobar.net,

Server manager, i.e. routines responsible for spawning children processes, con-
trolling their number and lifetime, etc.

Level ‘1’ gives additional information about allowed connections and children
exit codes.

Level ‘2’ gives insight to the server manager life cycle.

Module subsystem: shows what modules and with what arguments are loaded,
etc.

database (3)

query (4)
conf (5)

Databases and their functionality.
Query dispatcher.

Configuration file parser.
Level ‘1’ enables warnings about undefined variables.
Level ‘2’ displays each logical line and the result of expanding and splitting it.

Level ‘100’ enables wordsplitter debugging. This means a lot of cryptic output
useful only to those who have a good knowledge of how the wordsplitter works.

Appendix D: GNU Free Documentation License 59

Appendix D GNU Free Documentation License

Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

60

Smap Manual

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

Appendix D: GNU Free Documentation License 61

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

62

o

N.

0.

Smap Manual

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

Appendix D: GNU Free Documentation License 63

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

64

10.

Smap Manual

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix D: GNU Free Documentation License 65

D.1 ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Concept Index

Concept Index

This is a general index of all issues discussed in this manual.

--usage, —-usage option, smapc.............. 47
--usage, ——usage option, smapd.............. 18

SIMAPC .+« vt vvtt ittt 46
/etc/hosts.allow.........ooviiniiiiiiiinin, 12
/etc/hosts.deny ..., 12
/etc/ldap.conf i 37
/etc/my.cnf ... 33

A

a, ——a option, SMAPCvvvvuirreeennnnn.. 47
allgroups...........oiiiiiiiiii 21
annotate 45
annotate, - annotate option, smapc......... 47
append-load-path...............o il 13
auth mode, mailutils............ 28
auth, mailutils mode........................... 25

B

B, --Boption, smapc 47
backlog ...t 11, 21
base 38
batch, - batch option, smapc................ 47
binddn........... .o i 38
bindpw........ 38
bindpwfile......... il 38

C

c, ——coption, smapdiiiiiiin, 17
category, debugging............ oL 9
close. ..o 30, 45
close-db............ i 32
command line options 17
command prefix il 44
comments, configuration....................... 19
config, - config option, smapd 17
config-dumpl 26
config-filel 37
config-file, mysql...............cooiiiiinnn, 33
config-group, mysql.......................... 33
config-verbose..............l 26
configuration file, mailutils..................... 27

configuration file, smapd 19

67
configuration statement........................ 19
connect_timeout, postgres option........... 35
D
d, --d option, smapc......................... 47
d, --d option, smapd......................... 18
daemon name, TCP wrappers.................. 12
database............coiiiiiiiiiiii., 13, 22, 24
database, defined 3
database, mysqll 34
database, sed.............. . 39
database, Smap..........oiiiiii 13
Ab . 25
dbname, postgres option 35
debugot 20, 29, 45
debug category i 9
debuglevel 9
debug, - debug option, smapc................ 47
debug, - debug option, smapd................ 18
debugging 8
debugging information.......................... 9
debugging specification 9
default ... 24
default mapooviiiiiii i 44
default reply ... 4
default, dispatch condition................. 15
QLG 25
diagnostics 8
Air. . 26
dispatch.......coooiiiiiiiiiiiiiii 14, 23
dispatch rule, overview............. o 4
dispatch rules 14
AOTIE . .t 30
E
e, ——eoption, smapdiiiiiiiian, 17
€CHO L\ 25
€SCaPEe EXPANSION « . vttt 19
€SCAPE SEQUEIICES . .+« vttt eteeenee e 19
EX_CONFIG.....oooniiiiiiii i 15
EX_OK .o 15
EX_UNAVAILABLEot 15
EX_USAGE. 15
exit codest 15
expansion, variableol 25
expression, regular........... oo 23
F
f, ——f option, smapd 17
F, ——=F option, smapd 18

68

FDL, GNU Free Documentation License 59
field splitting ..o 19
filter 38
foreground............l 20
foreground, - foreground option, smapd.... 17
from.... ... 14, 23

g, transformflag........... oL 40
BECOS « ittt ittt 26
Bid. ... 26
globbing patterns.......... oo 23
BLOUD « o iitiieii it et 21
Guile APT 31
guilemoduleol 29

H

h, —-h option, Smapccovvvuuuen... 47
h, ——h option, smapd 18
help ... o 45
help, - help option, smapc.................. 47
help, - help option, smapd.................. 18
history.............. i 45
host, mysql......coiniiiiiii 33
host, postgres option........................ 35
hostaddr, postgres option................... 35

I

i, —-i option, smapdl 18
i, transformflagol 40
idle-timeout il 20
inetd modeooiiiiiii 7
inetd, - inetd option, smapd................ 18
inetd-mode........... il 20
Init ..o 30
init file.....oooii 46
indt-args. 29
init-fun.......... . ..ol 29, 31
init-script........ ...l 29, 31
initialization file....... o ol 46
interactive mode........... ool 43
interactive mode, smapc.............., 43

J

join—delim. ... 38

Rey . 24, 25
key, mysql..... ..o 34
key, postgres....................oooL 36
krbsrvname, postgres option................. 36

Smap Manual

L

1, —-loption, smapd 18
L, ——L option, smapdcccovvviiieann. 18
LD_LIBRARY _PATH............. it 13
ldap module...........coo i 37
LDAP .o 37
level, debuggingl 9
lint, - lint option, smapd.................. 17
load path..... ... 12
load-path ...t 13, 22, 29
log-facilityl 20
log-facility, - log-facility option, smapd
... 18
1O Lag oo 20
log-tag, - log-tag option, smapd........... 18
log-to-stderr................... ... 20
log-to-syslog.......ooiiiiiiiiiii 20
loggingovui i 8
long option form............ il 17
LTDL_LIBRARY_PATH................... 13
M
MailboX ...o.vviiiiii 26
mailutils................. i 25
mailutils configuration file..................... 27
1 1ECY oS 14, 23, 25, 44, 45
Map (MTA abstraction layer)................... 1
map, mysql............. i 34
map, POSEETeS. ..ot 36
max—children............c.oouiiiiiiia.. 11, 21
mbq mode, mailutils........... o 28
mbq, mailutils mode............... 25
mbsize........... i 26, 28
MeTAL. .o 51
mode, inetd 7
MOde, SMAPC. ...ttt ettt 43
mode, standalone................ 7
modes, operation oo 7
module. ...t 12, 22
module installation directory................... 25
module load path........... 12
module, defined............ 3
modules...... ... i 12
msgsize o il 26, 28
MTA 1
mysql module oo 33
N
DAME .« .ottt et 26
negative-reply.............. 26, 27, 39
negative-reply, mysql.................... 35, 37
nodebug........... ... 29
0T} =« TP 44, 45
norc, - norc option, smapc.................. 47

Concept Index

(@)

ONEerTOr-Yeplycovvrurnnnnnnnnnnnn. 26, 28, 39
onerror-reply, mysql..................... 35, 37
o) <=« 30, 44, 45
open—db 31
operation modes........... ..o il 7
option, long form.............. L 17
option, short form.............., 17
options, command line......................... 17
options, postgres option.................... 36
output ports, Guile..........l 30

P

P, ——poption, Smapc............ciiiiiii... 47
P, ——poption, smapdc.uiiiiiiiin. 18
PassWd ... 26
password, mysql ... 34
password, postgres option................... 35
pattern, globbingol 23
patterns in query traces................. 8
pidfile....... o il 20
POTt, MySAl.ot 33
port, postgres option...................a.n 35
positive-reply.................... 26, 27, 38, 39
positive-reply, mysql.................... 34, 37
Postgres module.............o 35
prefix 45
prefix, command............. 44
prepend-load-path................ 13
privileges, runtime........... o oL 9
PIOMPt .o 45
prompt, - prompt option, smapc............. 47
Q

q, ——q option, Smapc...............iiiiiinan. 47
Q, --Q option, smapcoiiiiiia.. 47
QUETY o oe e e e 30
QUETY TTaCES . oot ettt e 8
query, mysql......... ..o, 34, 36
query-db........... ...l 32
quiet ...l 46
quiet, - quiet option, smapc................ 47
quit.... ... 44, 45
QUOtA ..ot 26
quote removalo o 19

R

readline........ o i 43
regular expressions oo 23
reply, default 4
reuseaddr ... 11, 21
rules, dispatch................................. 14
runtime privileges. i 9

69
S
s, ——s option, smapc...............iiiiiaa 47
s, ——s option, smapdiian 18
S-EXPIeSSION . ..ottt 40
S, —-S option, smapcL 47
sed databases.......... i 39
sedmodule............o il 39
sed, loading the module........................ 39
sed, using for lookups.......... 40
SETVET .« ittt 10, 21, 23, 45
server configuration............ 10
server, - server option, smapc 47
service, postgres option.................... 36
SEEUId ..t 9
shell ... o 26
short option form............... 17
shutdown-timeout................. 21
single query mode 43
single query mode, smapc.......... ... 43
single-processooiiiiiiiiia... 11, 21
single-process, - single-process option,
SMAPA . ..ttt 18
smap architecture.............. L. 3
smap, description ofl 1
smap-debug-port......... ...ttt 30
smapc, socket client utility..................... 43
SMAPA . .. 3,7
smapd, alternative configuration file for......... 7
smapd, configuration checking 7
socket mapo i 1
socket map protocoll 55
socket, mysql............ ... i 34
socket-modet 11, 21
SOCKEt—0WNeTttt 11
SOCKMAD 1
SOULCE . ottt ittt it 45
source, - source option, smapc 47
specification, debugging............... 9
ssl-ca, mysql........ccoiiiiiiiiiiiii 34
sslcert, postgres option.................... 36
sslcrl, postgres option..................... 36
sslkey, postgres option..................... 36
sslmode, postgres option.................... 36
sslrootcert, postgres option................ 36
standalone mode............... ool 7
statement, configuration....................... 19
stderr, - stderr option, smapd 17
SYSIOg oo 8
syslog, - syslog option, smapd 18
T
t, ——t option, smapd 17
T, ——-T option, SMapCcovvvvieinnnnn.. 47
T, —=T option, smapdcooviiii., 18
TCP Wrappersovuuiiniiiniiiieannnn. 12
TCP Wrappers.oouueee i, 10

tls—cacert......oiiiiii i 38

70
tls_cacert............. ... i 38
trace 20
trace patterns il 8
trace, - trace option, smapc................ 47
trace, - trace option, smapd................ 18
trace-pattern............ ...l 20
trace-pattern, - trace-pattern option, smapd
... 18
tracing queries............... i i 8
U
Uld. .o 26
Urd. oo 38
URL .. 10
L F= 1= o 20
user, mysql............. ... 34
user, postgres option................ ... 35

Smap Manual

vV

V, —=V option, smapccoovviiiii... 47
V, -V option, smapd, 18
variable expansion............................. 25
variable substitution...............o 19
VEISIOM ..ot 46
version, - version option, smapc........... 47
version, - version option, smapd........... 18
virtual functions, guile module................. 30

A%

Warranty.........ooooviiiiiiiiiiiiiiiii 46

X

x, transformflag............... 40
XEOXm .o 30
xform-db...... 32

	Introduction
	Overview of the Smap Architecture
	The Socket Map Server
	Smapd Operation Modes
	Logging
	Tracing and Debugging
	Runtime Privileges
	Server Configuration
	TCP Wrappers
	Loadable Modules
	Databases
	Query Dispatch Rules
	Transformations
	Smapd Exit Codes

	Command Line Syntax
	Smapd Configuration File
	Modules Shipped with Smap
	Echo
	Mailutils
	Variable Expansion
	Mailutils Loading Sequence
	Mailutils Databases
	Mailutils Auth Mode
	Mailutils MBQ Mode

	Guile
	Virtual Functions
	Guile Output Ports
	Guile Initialization
	Guile API

	Mysql
	MySQL Configuration
	MySQL Query and SMAP Replies

	Postgres
	Postgres Configuration
	Postgres Query and SMAP Replies

	ldap
	LDAP Configuration
	LDAP Filter and SMAP Replies

	Sed
	Loading sed module
	Defining Sed Databases
	S-expressions
	Using Sed for Lookups

	Socket map client
	Single Query Mode
	Interactive Mode
	Smapc Command Summary

	Initialization File
	Smap Invocation

	How to Report a Bug
	Example: Using smapd with MeTA1
	Configure local_user_map.
	Configure aliases
	Dispatch Rules
	MeTA1 configuration

	The Sockmap Protocol
	Sendmail Status Codes
	MeTA1 Status Codes
	Mailfromd Status Codes

	Debug Categories
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Concept Index

