Pound

version 4.13, 21 August 2024

Sergey Poznyakoff.

Copyright (©) 2024 Sergey Poznyakoff

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License.”

Table of Contents

1 Overview............... 1
2 Introduction................ 2
3 Usage.....coo 4
4 Simple Proxy 6
4.1 Service Selection........ ..o 6
4.1.1 Regular EXpressionsoeeiiiiiiiiiiiiiiiiiiien... 9
4.1.2 ACL .. 9

4.2 Request modifications i 10
4.3 Conditional branches 11
4.4 Modifying responsesovuueiut i 12
4.5 Authenticationo 12
4.6 RedirectS. 13
4.7 EITOT TESPOMSES . « oottt ittt ettt et e e e et 14
5 HTTPS 15
5.1 ACME .. 15
5.2 Redirect HTTP to HTTPS ... 16
5.3 HTTPS backends.......... ..o 17
6 Request balancing.............................. 18
6.1 SESSIONS .« oo e 19
7 Workermodel 21
8 Logging 22
9 Configuration.......................... L. 27
9.1 Lexical structurec.cooiiiiiiiiiii 27
0.2 SYIBAX .ttt 27
9.3 String EXpansionsc..ouiiteiiie i, 28
9.3.1 Backreference expansionc.ccoiiiiiiiiiiiaa.. 28
9.3.2 Request Accessor Interpretation........................... 29

9.4 Global directivesooiiiiiii e 29
9.4.1 Runtime directives...........ouiiiiiiiiiiiiiiii i 29
9.4.2 Worker Settingso 30

9.4.3 Proxy Tuning Directives......... ..., 31

9.4.4 SSL Settings. . ..ouvutet i e 32
9.4.5 Regular Expression Settingso.ooiaL. 32
9.4.6 ACL Definition............ooiiiiiiiin... 32
9.5 Fileinclusion....... ... 33
9.6 Logging configuration........... ... 33
9.7 Control socket settings ...t 34
9.8 TIMeEOULS . .\ttt e e 35
9.9 ListenHTTP e 36
9.9.1 Listener addressouiiiiiiii i 36
9.9.2 Listener-specific limits.......... o oo 36
9.9.3 Error definitions. ... 37
9.9.4 Listener logging 39
9.9.5 Request Modification.................cooiiiiii... 39
9.9.5.1 The rewrite statement........................... ... 41
9.9.6 Response Modification................coviiiiiiiiiiia... 44
9.9.6.1 The Rewrite response statement.................... 44
9.9.7 Service definitions ... 45
9.10 ListenHTTPS e 46
.11 SEIVICE . vttt et 47
9.11.1 Service Selection Statements................ 48
9.11.2 Request and Response Modification...................... 50
9.11.3 Service Logging.couiiiiiii i 51
9.11.4 Backends...........coiiiiiiii 51
9.11.4.1 Backend........ ... i 52
9.11.4.2 Globally Defined Backends.......................... 53
9.11.4.3 Special Backends 53
9.11.5 SESSIOM . vt 55
9.11.6 Other Statements.............coiiiiiiiiiiiiiiiinn... 55
10 poundctl.............. 57
10.1 poundctl commandsoueiuttiniiiii e 58
10.2 poundctl options ... o8
10.3 poundctl template........ 59
10.3.1 Template syntax..........cooiiiiiiiiiii i 59
10.3. 1.1 ActionS. ...t 60
10.3.1.2 Arguments ... 61
10.3.2 Pipelinesoooiii 62
10.3.3 Variables..........ii 63
10.3.4 Input object...... ..o 64
10.3.4.1 Full listing. ..o 64
10.3.4.2 LAStenero.uuiiini 65
10.3.4.3 ServiCe .. uvtit e e 65
10.3.4.4 Backend.......... ... i 66
Appendix A Metric Families 67

Appendix B Time and Date Formats........... 70

ii

Appendix C GNU Free Documentation License .. 74

iii

1 Overview

Pound is a reverse proxy, load balancer and HTTPS front-end for Web servers. It was
developed to provide for even distribution of load between backend httpd servers and to
allow for a convenient SSL wrapper for those servers that do not offer it natively.

The core principles of its design are simplicity and safety. Pound is a very small program,
easily audited for security problems. Normally it runs as a non-privileged user, and can
optionally be run in a chrooted environment. With several exceptions, it does not access
the hard disk during its runtime. In short, it should pose no security threat to the server it
runs at.

The original version of pound was written by Robert Segall at Apsis GmbH'. In 2018, I
added support for newer OpenSSL to the then current version of the program (2.8). This
version of pound, hosted on github was further modified by Rick O’Sullivan and Frank
Schmirler, who added WebSocket support.

On April 2020, Apsis started development of pound 3.0 — essentially an attempt to rewrite
program from scratch, introducing dependencies on some third-party software.

On 2022-09-19, the development and maintenance of pound was officially discontinued
and Apsis GmbH was dissolved. Following that, I decided to continue development of
the program taking my fork as a base. I considered the branch 3.0, which emerged for a
short time before the original project was abandoned, to be a failed experiment. To ensure
consistent versioning and avoid confusion, my versioning of pound started at number 4.0.

1 https://web.archive.org/web/20221202094441/https://apsis.ch/

https://web.archive.org/web/20221202094441/https://apsis.ch/

2 Introduction

The job of a proxy server is to receive incoming HTTP or HTTPS requests, route them
to the corresponding web server (backend), wait for it to reply and forward the response
back to the querying party. If more than one backend is configured to serve requests, the
proxy should distribute requests evenly between them, so that each backend gets a share of
requests proportional to its capacity.

Pound gets information about backends and instructions on HTTP request routing from
its configuration file pound.cfg. It is located in the system configuration directory, which
is normally /etc!. Syntactically, the configuration file is a sequence of statements and
sections, separated by arbitrary amount of empty lines and comments. A simple statement
occupies a single line and consists of a keyword (directive) and one or more values separated
by whitespace. A section is a compound statement that encloses other statements and
sections. Sections begin with a keyword, optionally followed by arguments, and end with a
word End on a line by itself. All keywords are case-insensitive.

The configuration file defines three kinds of objects: listeners, services, and backends.
These are defined as configuration sections.

A listener defines IP address (and optionally port), pound will be listening on for incom-
ing requests. It can also be regarded as a frontend definition. Listener declarations start
with ListenHTTP (for plaintext HT'TP frontends) or ListenHTTPS (for HTTPS frontends)
keywords.

Service sections define rules that decide to which backend to route requests received by
the listeners. These rules normally involve analysis of the requested URL or HT'TP headers.
A service may also contain statements that modify requests or responses.

Services are normally declared inside listeners. Thus, when a listener receives a request,
it iterates over its services (in the order of their appearance in the configuration file) to find
the one that matches the request. If such a service is found, it receives the request and
eventually passes it on to a backend.

Services may also be declared outside any listeners, in the global scope. Such services
are shared between all listeners. They are tried if none of the services declared within a
listener match the incoming request.

Service declarations start with the Service keyword.

Backends are objects that actually handle requests and produce responses. Most often
these are regular backends, which declare IP addresses and ports of servers that are to handle
the requests. Backends are defined inside of services, so that the service that matched the
request routes it to its backend. If more than one backend is defined within a service,
incoming requests will be distributed so that each backend gets its share of the load.

Several special backend types are provided, such as emergency backends, redirects, etc.
Only one special backend can be declared for a service, and it cannot be used together with
other backend types.

Thus, an average request processing looks as follows. First, a request is received by
one of the listeners. The listener then iterates over its services, until it finds one that
matches the request. If no such service was found, the listener retries the process with the

1 The exact location depends on compilation options. When in doubt, examine the output of pound -V.

Chapter 2: Introduction 3

services defined in the global scope. If no matching service is found, a 503 error (‘Service
Unavailable’) is returned. Otherwise, if the matching service was found, that service passes
the request to one of its backends. It may modify the request before that, if it is instructed
so by the configuration. Once the backend responds, the service passes the response back
to the listener (again, optionally modifying it, if needed), which finally passes it back to the

querying party.

3 Usage

When started, pound first parses its configuration file. If any errors are detected at this
stage, it prints the appropriate diagnostics on the standard error and exits with code 1.
Otherwise, if the configuration file is OK, pound opens sockets declared in the listener
sections, detaches itself from the controlling terminal and starts serving incoming requests.
From that moment on, all diagnostic messages are reported via syslog (see Chapter 8
[Logging], page 22).

To check whether the configuration file is correct, run pound with the -c (for check)
configuration option:

pound -c
Started this way, pound will check the configuration file, report any errors, if found,
and exit with status O if there are no errors or 1 otherwise. The option -v can be used
to increase the verbosity level. In particular, it instructs pound to print a confirmation

message on standard error, if no errors have been encountered (by default it would exit
silently in this case).

To use alternative configuration file, supply its full pathname with the -f option, e.g.:
pound -f /etc/pound/test.cfg

If you are experimenting with new configurations, you might want to run pound in
foreground mode and have it print its diagnostics on the standard error. This is done by
the —e option. So, for testing purposes, it is quite common to start it this way:

pound -e

Another option, -F, has similar effect, except that it honors logging settings from the
configuration file (see Chapter 8 [Logging], page 22), i.e. when used with this option, pound
will remain in foreground, but will report its messages in accordance with its configuration

file.
The following table summarizes all command line options:

-c Check configuration file for syntax error and exit. Exit code indicates whether
the configuration is OK (0) or not (1).

-e Start in foreground mode and log to standard error (or standard output, for
messages with LOG_DEBUG and LOG_INFO severity levels). This option
ignores the LogLevel configuration setting (see Chapter 8 [Logging], page 22).

-F Foreground mode. Do not detach from the controlling terminal after startup,
but remain in the foreground instead. This overrides the Daemon configuration
setting (see [Daemon], page 29). The log stream (syslog facility or stderr)
requested in the configuration file remains in effect.

-f file Read configuration from the supplied file, instead of from the default location.
-h Print short command line usage summary and exit.

-p file Sets location of the PID file. This is the file where pound will write its PID
after startup. This option overrides the value set by the PIDFile configuration
setting (see [PIDFile], page 30).

Chapter 3: Usage 5

-v Verbose mode. During startup, error messages will be sent to stderr (stdout, for
LOG_DEBUG and LOG_INFO severities). If pound is configured to log to syslog, er-
ror diagnostics will be duplicated there as well. After startup the configuration
settings take effect.

When used with -c this option also instructs pound to print an extra confir-
mation message on standard error, if there are no errors in the configuration

file.

-V Print program version, licensing terms, and configuration flags and exit with
status 0. You can use this option, in particular, to get the default values pound
was built with, such as e.g. configuration file location.

-W feature

-W no-feature
Enable or disable (if prefixed with ‘no-’) additional pound features. As of
version 4.13, the following features are implemented:

warn-deprecated [Feature]
When parsing the configuration file, warn if it uses any deprecated state-
ments. This is the default. To suppress deprecation messages, use -W
no-warn-deprecated.

dns [Feature]
Resolve host names found in configuration file and returned in the
Location: header. This is the default.

You can use -W no-dns to disable it, in order to suppress potentially
lengthy network host address lookups. Make sure if your configuration
file refers to backends only by their IP addresses in this case.

This setting affects also redirection location rewriting: See Section 9.9.6
[Response Modification], page 44.

include-dir=dir [Feature]

no-include-dir [Feature]
This controls the include directory, i.e. the directory where pound looks
for relative file names referred to in its configuration file. See [include
directory], page 33, for a detailed discussion of this feature.

Using -W include-dir=dir sets the new value of the include directory.

By default, the system configuration directory is used as include directory,
so that any relative file names are looked up there. To disable this, use
the -W no-include-dir option. This means that each relative filename
used in arguments to the directives in the configuration file will be looked
up in the current working directory. This is useful mainly in testsuite.

4 Simple Proxy

In this chapter we will deploy several simplest proxying configurations to illustrate the
concepts introduced above.

Suppose you have an HT'TP server running on localhost port 8080, and want to make it
accessible from outside. This is achieved by the following configuration file:

ListenHTTP
Address 0.0.0.0
Port 80
Service
Backend
Address 127.0.0.1
Port 8080
End
End
End

This configuration consists of three nested sections: ListenHTTP, Service, and Backend.
Each section ends with a keyword End on a line by itself.

The first thing that draws attention are Address and Port statements appearing in
both listener and backend sections. In ListenHTTP they specify the IP address and port to
listen on for incoming requests. Address ‘0.0.0.0’ stands for all available IP addresses. In
Backend section, these keywords specify the address and port of the remote server, where
incoming requests are to be forwarded.

The Service section has no matching conditions, so it will match all requests.

4.1 Service Selection

To route requests to different servers, multiple services are used. In this case, each service
has one or more matching rules, i.e. statements that define conditions that a request must
match in order to be routed to that particular service. Syntactically, such rules have the
form:

kw [options] "pattern"

where kw is a keyword specifying what part of the request is used in comparison, pattern
is a textual pattern which that part is matched against, and options are zero or more flags
starting with a dash sign, which define matching algorithm.

Perhaps the most often used condition is Host, which compares the value of the HTTP
‘Host’ header with the given pattern. By default it uses exact case-insensitive match:

Host "example.com"
To treat the pattern as a regular expression, use the -re option, as in:
Host -re ".*\\.example\\.com"

Whenever we speak about regular expression we usually mean POSIX extended regular
expressions (see Section “POSIX extended regular expressions” in GNU sed). However,
other regex types can also be used. This is covered in Section 4.1.1 [Regular Expressions],
page 9.

Chapter 4: Simple Proxy 7

Notice the use of double backslashes in the above example. The backslash before each
dot is needed to match it literally, while another one protects the first one from being
interpreted as an escape character in string (see [Strings|, page 27).

Other useful options are -beg and -end, which enable exact matching at the beginning
and end of the value, correspondingly. Thus, the Host statement above can be rewritten
as:

Host -end ".example.com"

The set of options available for use in matching statements is uniform. See Table 9.2,
for a detailed discussion of available options.

The following configuration snippet illustrates the use of matching rules to select
appropriate service (and, correspondingly, backend). It will route all requests for
‘www . example.com’ to backend ‘192.0.2.1:8080°, and requests for ‘admin.example.com’
to ‘192.0.2.4:8080’:

ListenHTTP
Address 0.0.0.0
Port 80

Service
Host "www.example.com"
Backend
Address 192.0.2.1
Port 8080
End
End

Service
Host "admin.example.com"
Backend
Address 192.0.2.4
Port 8080
End
End
End

Other matching statements use POSIX regexp matching by default. These are:

Header Compare HTTP header against a pattern. E.g

Header "Content-Type:[[:space:]]*text/.*"
URL Match URL:

URL "/login/.*&name=.*"
Path Match the path part of the URL:

Path -beg "/login"

Query Match the query part of the URL.

Chapter 4: Simple Proxy 8

QueryParam
Match the value of a query parameter. This statement takes two arguments:
parameter name and pattern, e.g.:

QueryParam "type" "(int) | (bool)"

See Section 9.11.1 [Service Selection Statements], page 48, for a detailed description of
these and other matching statements.

Multiple matching rules can be used. Unless expressly specified otherwise, they are
joined by logical ‘and’ operation. For example:

Service
Host "www.example.com"
URL ""~/admin(/.*)?"
Backend
Address 192.0.2.4
Port 8080
End
End

This service will be used for requests directed to host name ‘www.example.com’ whose
URL begins with ‘/admin’, optionally followed by more path components (such as, e.g.
‘http://www.example.com/admin/login’).

To select a service that matches one of defined rules (i.e. combine the rules using logical
‘or’), enclose them in Match OR block, as in:

Match OR
Host "example.com"
Host "www.example.com"
End

The argument to Match can be ‘OR’ or ‘AND’, specifying logical operation to be used to
join the enclosed statements. The argument can be omitted, in which case ‘AND’ is implied.
Match statements can be nested to arbitrary depth, which allows for defining criteria of
arbitrary complexity. For example:

Service
Match OR
Host "admin.example.com"
Match AND
Host "www.example.com"
URL "~/admin(/.*)?"
End
End
Backend
Address 192.0.2.4
Port 8080
End
End

Chapter 4: Simple Proxy 9

4.1.1 Regular Expressions

Request matching directives use POSIX extended regular expressions by default. If pound
was compiled with PCRE or PCRE2 library, Perl-compatible regular expressions can be used
instead. This can be done either globally or individually for a given directive.

To change regular expression type globally, use the following directive:
RegexType pcre

It affects all request matching directives that appear after it in the configuration file,
until next RegexType directive or end of file, whichever occurs first. To change back to
POSIX regular expressions, use posix argument:

RegexType posix
Argument to the RegexType directive is case-insensitive.

Regular expression type can also be selected individually for a directive, using -posix
or —pcre flags. For example:

Host -pcre -icase "(7<!www\\.)example.org"

4.1.2 ACL

Access control lists, or ACLs, are special request matching statements that evaluate to true
if the request came from one of the predefined IP addresses. Access control lists are defined
using the ACL section statement. Each line within it defines a single CIDR enclosed in
double quotes. A CIDR consists of a network address (IPv4 or IPv6), optionally followed
by slash and network mask length, a decimal number in the range [0,32] for IPv4 and [0.64]
for IPv6. For example:

ACL
"127.0.0.1/8"
"192.0.2.0/25"
End

Such anonymous ACLs can appear anywhere a matching statement is allowed.

If an ACL is intended for use in multiple places of the configuration file, it can be defined
as a named ACL. In a named ACL declaration, the ACL keyword is followed by a symbolic
name in double quotes. This name must uniquely identify this ACL among other access
control lists. Named ACLs are allowed only in the global (top-level) scope of a configuration
file:

ACL "secure"
"127.0.0.1/8"
"192.0.2.0/25"

End

This ACL can then be used in any Service appearing after its definition by using the
following construct:

ACL "secure"

Consider for example the following service declaration:

Chapter 4: Simple Proxy 10

Service
ACL "secure"
Path -beg "/stat"
Backend

End
End

This service will handle requests whose URL starts with ‘/stat’, if they came from one
of the IP addresses mentioned in the access control list with the name ‘secure’. Effectively,
this means that the access to that URL is limited to these IP addresses.

4.2 Request modifications

A service can modify requests before forwarding them to backends. Several statements are
provided for that purpose:

SetHeader Set a HT'TP header.

DeleteHeader
Delete a HTTP header.

SetURL Rewrite the request URL.
SetPath ~ Rewrite the path part of the URL.
SetQuery Rewrite the query part of the URL.

SetQueryParam
Set a single query parameter.

For example, the following service declaration will add the header ‘X-Resent-By: pound’
to each request:

Service
SetHeader "X-Resent-By: pound"
Backend

End
End

Arguments to request modification statements are expanded before actual use. During
expansion, references to parenthesized subexpressions in matching rules are replaced with
their actual values. Parenthesized subexpression is a part of a regular expression enclosed
in parentheses. It can be referred to in string arguments as ‘$n’, where n is its ordinal
number. Numbers start at one, ‘80’ referring to the entire string that matched.

The process of expanding parenthesized subexpressions is called backreference expansion.
For example, the following condition:
Header "Content-Type: ([~/]+)/(.+)$"

has two subexpressions: ‘$1” and ‘$2’. The following fragment uses these values to add two
query parameters to the URL:

SetQueryParam "type" "$1"
SetQueryParam "subtype" "$2"

Chapter 4: Simple Proxy 11

As a more practical example, the following service rewrites the path to JPEG and GIF
images:
Service
Path "/(["/1+\\. (jpglgif))$"
SetPath "/images/$1"

End

When several matching statements are used, these forms refer to the last one that
matched. Subexpressions in prior statements can be referred to using the ‘$i(j)’ con-
struct. Here, j is the 0-based number of the statement, counted from the last one upwards.
For example, given the following statements:

Host -re "www\.(.+)"
Header -icase "“Content-Type: *(.*)"
Path "~ /static(/.*)?"

‘$1’ refers to the subexpression of Path, ‘$1(1)’ to that of Header, and $1(2) to that of
Host.

String arguments to Set statements can also contain request accessors — special con-
structs that are expanded to particular values from the request. Syntactically, a request
accessor is ‘% [name]’, where name denotes the request part to access. For example, % [url]
expands to entire URL, % [path] to the path part of the URL, etc.

Using request accessors, the above example of path modification can be rewritten as:

Path "\\. (jpglgif)s$"
SetPath "/imagesY [path]"
See Section 9.3.2 [Request Accessors], page 29, for a detailed discussions of available
accessors.

4.3 Conditional branches

Conditional request modifications can be organized in logical branches, each branch being
applied only if the request matches certain condition. The Rewrite section encloses a set
of request matching rules followed by one or more request modification statements, which
will be applied if the former match the request. Optional Else sub-section, which in turn
contains request matching rules and modification statements, will be tried if those rules
don’t match. Any number of Else sub-sections is allowed, each one being tried if the
previous ones don’t match.

The example below illustrates this concept. This configuration snippet sets different
paths depending on the file type and URL used:

Service
Rewrite
Header "Content-Type:[[:space:]]+image/.*"
SetPath "/images’ [path]"
Else

Match AND
Host "example.org"

Path "\\.[~.]+$"

Chapter 4: Simple Proxy 12

End

SetPath "/static)[path]"
Else

Path "\\.[".]+$"

SetPath "/assets)%[path]"
End

End

4.4 Modifying responses

The rewrite statement can also be used to modify responses received from backends before
passing them back to the querying party. To indicate this intent, the Rewrite statement
must be followed by the response keyword:

Rewrite response
SetHeader "X-Been-There: pound"
End

When modifying responses, only two request modification statements are allowed:
SetHeader and DeleteHeader. The list of request matching rules is limited as well:
Header and StringMatch, plus Match and Not conditionals. Notice that these conditionals
operate on the response, and not on the request, as in previous chapters. For example:

Rewrite response
Header "Content-Type:[[:space:]]+text/(.*)"
SetHeader "X-Text-Type: $1"

End

This will insert an additional X-Text-Type header into the response. It will contain the
subtype value from the Content-Type header of the original response.

4.5 Authentication

Along with access control lists, introduced above (see Section 4.1.2 [ACL], page 9), au-
thentication provides another way to limit access to certain services. Pound supports basic
authentication, as defined in RFC 7617.

This authentication method relies on the presence of the Authorization header in
the HTTP request. If the header is present, its value specifies the ‘Basic’ authorization
method and contains credentials (username and password) that match one of the users
from the server user database, the request is accepted. Otherwise a 401 (‘Authentication
Required’) or 407 (‘Proxy Authentication Required’) response is returned with the
WWW-Authenticate header requesting basic authentication.

The BasicAuth request matching statement verifies if the Authorization header is
present and provides correct credentials. The statement matches the request if so.

The BasicAuth statement takes a single argument, specifying the name of a file con-
taining user database. This is a plain-text file created with htpasswd or similar utility, i.e.
each non-empty line of it must contain username and password hash separated by a colon.
Password hash can be one of:

e Password in plain text.

Chapter 4: Simple Proxy 13

e Hash created by the system crypt(3) function.

e Password hashed using SHA1 algorithm and encoded in BASE64. This hash must be
prefixed by ‘{SHA} .

e Apache-style ‘APR1’ hash.

Password file is read on the first authorization attempt, after which its contents is stored
in memory. Pound will re-read it if it notices that the file’s modification file has changed,
so you need not restart the daemon if you do any changes to the file.

Thus, if you put the BasicAuth statement in each service that must be accessible to
authorized users only, that would do the first and principal part of the basic authentication
scheme: access control. There remains second part: returning properly formatted 401
response if the request did not pass authorization. That can be done using a combination
of the Error internal backend (see Section 4.7 [Error responses|, page 14) and response
modification techniques described in the previous section.

However, instead of using BasicAuth in each service requiring limited access and placing
a service generating the 401 response in the end, it is simpler and less error-prone to use
the following approach:

Create a service with the following content:

Service
Not BasicAuth "pound/htpasswd"
Rewrite response
SetHeader "WWW-Authenticate: Basic realm=\"Restricted access\""
End
Error 401
End

Replace the file name (pound/htpasswd) and realm name (‘Restricted access’) with
the actual values.

Make sure that all services that need to be protected by basic authentication are declared
after that service. This way, any request that does not convey an Authentication header
with credentials matching an entry from your password file will match this service, and will
be replied to with a properly formatted 401 response, which will prompt the remote user
to authenticate himself. On the other hand, authorized requests will not match this service
and will eventually be handled by one of the services declared after it.

4.6 Redirects

Apart from regular backends introduced in previous sections, pound provides also several
special or internal backends. As their name implies, such backends handle requests and
generate responses internally, without forwarding them to any external entities.

One of such internal backends is Redirect. It generates responses redirecting the client
to another location. The statement takes two arguments: a three-digit HI'TP status code
to return, and the URL to redirect to:

Service
Redirect 301 "https://www.gnu.org"
End

Chapter 4: Simple Proxy 14

Allowed values for the status code are 301, 302, 303, 307 and 308. This argument is
optional: if omitted, 302 is used.

If the URL argument has no path component (as in the example above), then the path
(and query, if present) components from the original request will be appended to it. For
example, if the original URL were ‘http://example.com/software’, the service above
would redirect it ‘https://www.gnu.org/software’.

Otherwise, if the path component is present in the URL argument (even if it is a mere
‘/7), then the URL is used as is. For example, the following will drop any path and query
components from the URL when redirecting:

Redirect 301 "https://www.gnu.org/"

The URL argument is subject to backreference expansion and request accessor interpre-
tation (see Section 4.2 [Request modifications], page 10). If any of these are actually used,
the above logic is disabled.

String expansions make it possible to implement complex redirects. For example, the
following redirect swaps the first two path components of the original URL:

Service
URL "~/([~/1+)/C[°/16) (/. %)?"
Redirect "http://%[host]/$2/$1$3"
End

The following is a standard paradigm for redirecting requests from HTTP to HTTPS:

Service
Redirect 301 "https://%[host]l%[urll"
End

4.7 Error responses

Another type of internal backends is Error, a backend that generates error responses. It
is useful, for instance, to provide a custom error status and/or message when no service
matches the request. Normally, for such cases pound generates a standard 503 response
(‘Service Unavailable’) with the built-in error page. You can customize this behavior by
using as the last service a Service section with Error backend. For example:

Service
Error 404 "pound/404.html"
End

The first argument specifies the HTTP status code to return. See [Error backend],
page 53, for more info.

The second argument is optional. It supplies the name of a file with the error page to
return along with the response. The name may be absolute or relative. In the latter case,
the file will be looked up in the include directory, a special directory for storing pound-
specific files. See [include directory], page 33. The file will be read only once, at program
startup. If you modify the file and want pound to notice changes, you will have to restart
it.

If the second argument is not supplied, the error text is determined by the ErrorFile
code statement in the enclosing listener (where code is the HTTP code in question). If it is
not supplied, the built-in default text is used. See Section 9.9.3 [Error definitions|, page 37.

15

5 HTTPS

In the previous chapter we have described basic proxying techniques using plain HTTP
listener as an example. Now we will discuss how to use HI'TPS both for listeners and
backends.

To accept HT'TPS requests you need to declare ListenerHTTPS listener. It is similar to
plain ListenerHTTP described above, except that it requires a certificate to be declared.
For example:

ListenHTTPS
Address 0.0.0.0
Port 443
Cert "/etc/ssl/priv/example.pem"
Disable TLSv1
Ciphers "HIGH:Q@STRENGTH:!RSA"
End

The Cert statement supplies the name of the certificate file in PEM format. The file
must contain the certificate, intermediate certificates (if necessary), and certificate private
key, in that order.

The Cert argument can also specify a directory, in which case pound will scan that
directory, trying to read the certificate from each regular file encountered. It will report an
error if unable to load the file, so this directory should contain only certificate files. The
order in which certificate files are read is not specified.

Multiple Cert statements are allowed. When trying to find the matching certificate,
pound will stop at the first one whose CN matches the requested host name. Thus, the
ordering of Cert statements is important. Normally they should be placed in most-specific
to least-specific order, with wildcard certificates appearing after host-specific ones.

Cert directives must precede all other SSL-specific directives.

Another important directive is Disable. It disables the use of the specified TLS protocol
as well as all protocols older than it. Usually it is used to disable obsolete protocols.
For example, the Disable statement in the example above disables ‘TLSv1’, ‘SSLv3’, and
‘SSLv2’.

To further tune the strength of your encryption use the Ciphers directive. Its argu-
ment is a colon-delimited list of OpenSSL ciphers, as described in See Section “ciphers”
in ciphers(1). The cipher selection shown in the example above provides for excellent
encryption strength.

5.1 ACME

Automatic Certificate Management Environment (ACME), is a protocol for automated
deployment of HT'TPS certificates. It is perhaps the most often used method for obtaining
SSL certificates nowadays. In order to issue certificate for a domain or domains, the protocol
verifies that the web server that is requesting a certificate actually owns these domains. This
process is based on various challenge types.

Chapter 5: HT'TPS 16

Pound supports HT'TP-01' challenge type. When issuing a certificate using this challenge
type, the ACME client (a program responsible for periodic certificate re-issuing) obtains
from the authority a challenge file, and stores it in a predefined challenge directory. The
authority will then request this file from the webserver using a predefined URL. It is sup-
posed that the server will serve it from the file that has been just written by the agent.
If the server returns the file, its claim to own the domain is proved and the certificate is
issued.

Configuring pound to reply to challenge requests is as simple as putting an ACME state-
ment to the ListenHTTP section of its configuration file. The statement takes a single
argument — name of the challenge directory:

ListenHTTP

Address 0.0.0.0

Port 80

ACME "/var/lib/pound/.well-known/acme-challenge"
End

Needless to say, your ACME agent and pound must agree on this directory location.
Configuration of various ACME agents is beyond the scope of this document. Please refer
to the documentation of your agent for further details.

5.2 Redirect HTTP to HTTPS

Nowadays it is common to redirect all plain HT'TP requests to HT'TPS on the same URL.
The method of doing so was described in Section 4.6 [Redirects|, page 13. As an example,
this section shows a working HT'TPS configuration with such redirect.

ListenHTTP
Address 0.0.0.0
Port 80
Service
Redirect 301 "https://%[host]l¥[url]l"
End
End
ListenHTTPS
Address 0.0.0.0
Port 443
Cert "/etc/ssl/priv/example.pem"
Disable TLSv1
Service
Backend
Address 127.0.0.1
Port 8080
End
End
End

1 https://letsencrypt.org/docs/challenge-types/#http-0l-challenge

https://letsencrypt.org/docs/challenge-types/#http-01-challenge

Chapter 5: HT'TPS 17

5.3 HTTPS backends

Backends can use HT'TPS as well. To inform pound that communication with the backend
goes over an encrypted channel, use the HTTPS keyword. The typical usage is:

Backend
Address 192.0.2.1
Port 443
HTTPS

End

Notice, that unlike other statements, HTTPS is used without arguments.

Additional directives are available for fine-tuning the connection. If used, they must
appear after the HTTPS directive,

The Cert directive specify the client certificate to use when connecting. Use it if the
backend requires client authentication.

The Disable and Ciphers directives are similar to those described when discussing
ListenHTTPS: the former disables the given TLS protocol and all protocols prior to it, and
the latter configures the list of OpenSSL ciphers which the client wishes to use. The actual
cipher to use will be selected from this list during negotiation with the backend.

The example below illustrates the use of these directives:

Backend
Address 192.0.2.1
Port 443
HTTPS
Disable TLSv1_1
Cert "/etc/pound/crt/bl.pem"
Ciphers "HIGH:!RSA"
End

18

6 Request balancing

When several backends are defined in a service, incoming requests will be distributed among
them. This process is called balancing. By default, requests are distributed equally. This
can be changed by assigning them a priority — a decimal number which controls a relative
weight of the given backend in the distribution algorithm. The bigger the priority is, the
more requests this backend gets from the total flow.

The distribution algorithm is defined by balancing strategy. As of version 4.13, pound
supports two strategies: weighted random balancing and interleaved weighted round robin

balancing.

Weighted Random Balancing

This is the default strategy. Each backend is assigned a numeric priority be-
tween 0 and 9, inclusive. The backend to use for each request is determined at
random taking into account backend priorities, so that backends with numer-
ically greater priorities have proportionally greater chances of being selected
than the ones with lesser priorities.

The share of requests a backend receives can be estimated as:

P,/ S(P)
where P; is the priority of the backend with index ¢, and S(P) is the sum of all
priorities.

Interleaved Weighted Round Robin Balancing

Requests are assigned to each backend in turn. Backend priorities, or weights,
are used to control the share of requests received by each backend. The greater
the weight, the more requests will be sent to this backend. In general, the share
of requests assigned to a backend is calculated by the following relation:

B+ 1)/ (N + S(P))

where N is total number of backends, and P; and S(P) are as discussed above.

Weighted random balancing is used by default. Each backend gets the default priority
5, unless another value is expressly assigned using the Priority statement, e.g.:

Service

Backend
Address 192.168.0.1
Port 80
Priority 1

End

Backend
Address 192.168.0.2
Port 80
Priority 9

End

End

In this example, backend 192.168.0.2 will receive roughly 9 times more requests than
backend 192.168.0.1.

Chapter 6: Request balancing 19

The balancing strategy to use is defined by the Balancer keyword, which can appear
either in the global scope or within a Service section. Its argument can be one of:

random Use weighted random balancing (default).
iwrr Use interleaved weighted round robin balancing.

The Balancer statement appearing in the global scope defines balancing strategy for all
services that don’t have Balancer statement on their own.

6.1 Sessions

Some web applications attempt to introduce state persistence into the stateless HTTP
protocol, by defining sessions using various mechanisms, such as specially defined headers,
cookies, etc. For such applications it is critical that all requests that belong to a single
session be directed to the same server, i.e. backend. Clearly, this disrupts the balancer
logic, and requires that the proxy be able to understand the backend’s notion of session.

Pound is able to detect and track sessions identified by client address, Basic authenti-
cation (user id/password), URL parameter, cookie, HTTP parameter, and HTTP header
value.

Session tracking is enabled on a per-service basis by a Session section. The section
must contain at least the Type directive, which specifies what type of session tracking to
use, and the TTL directive, supplying session idle timeout in seconds.

Session types are case-insensitive. They are summarized in the table below:

Ip The IP session tracking type instructs pound to forward all requests from the
same client IP address to the same backend server:

Session
Type IP
TTL 300
End

Basic Using this session tracking type, pound parses the Authentication header of
each request. If the header is present, and specifies the ‘Basic’ authentication
type, user ID is extracted from it. Requests with the same user ID are forwarded
to the same backend server.

Session
Type Basic
TTL 300
End
URL This tracking scheme uses the value of URL query parameter to define a session.
The parameter name is supplied using the ID directive:
Session
Type URL
TTL 300
ID "sess"
End

In this example, sessions are identified by the ‘sess’ parameter, The request
URL might look like ‘http://example.org?sess=123".

Chapter 6: Request balancing 20

Cookie

Header

Parm

The Cookie tracking type use a certain cookie to identify sessions. The cookie
name is given by the ID directive:

Session
Type Cookie
TTL 300
ID "sess"
End

Sessions are identified by the value of HTTP header whose name is given by
the ID directive, e.g.:

Session
Type Header
ID "X-Session"
TTL 300

End

This is the least useful scheme. Sessions are identified by HTTP parame-
ter - a string that appears after a semicolon in the URL, such as ‘bar’ in
‘http://foo.com;bar’

Session
Type PARM
TTL 300

End

21

7 Worker model

Each incoming request is processed by a specific worker, i.e. a thread in the running
program. Total number of running workers is controlled by three configuration parameters.
WorkerMinCount defines the minimum number of workers that should always be running
(5, by default). Another parameter, WorkerMaxCount sets the upper limit on the number
of running workers (it defaults to 128).

At each given moment, a worker can be in one of two states: idle or active (processing
a request). If an incoming request arrives when all running workers are active, and total
number of workers is less than WorkerMaxCount, a new thread is started and the new request
is handed to it. If the number of active workers has already reached maximum, the new
request is added to the request queue, where it will wait for a worker to become available
to process it.

The third parameter, WorkerIdleTimeout, specifies maximum time a thread is allowed
to spend in the idle state. If a worker remains idle longer than that and total number
of workers is greater than the allotted minimum (WorkerMinCount), this idle worker is
terminated.

22

8 Logging

Pound can send its diagnostic messages to standard error, syslog, or to both.

Upon startup, while the configuration file is being parsed, the diagnostics goes to the
standard error. Once it switches to the operation mode and starts serving requests, diagnos-
tic output is switched to syslog. The syslog facility to use is configured via the LogFacility
configuration directive. By default, ‘daemon’ is used.

When running in foreground mode, the —e command line option instructs pound to use
standard error for logging, thus overriding the settings from the configuration file.

Normally, pound is not very loquacious in logging: only errors are reported. Logging
of each incoming request can be configured using the LogLevel directive. It can be used
either in listener scope, in which case it affects only this particular listener, or in global
scope, where it affects all listeners that don’t configure it on their own. The value of this
directive can be either an integer number in range 0 through 5 (inclusive), or a quoted
string. Numeric value requests one of the built-in log formats. String value refers either to
a built-in format name, or to a user-defined format name.

The built-in formats are:

0
null No request logging at all.

1
regular For each request, its source address, request line and response status are logged.

2
extended In addition to the above, the selected service and backend are shown.

3
vhost_combined
Detailed request logging using Apache-style Combined log format.

4

combined Same as above, but without virtual host information.

5

detailed Same as ‘combined’, with additional information about the selected service and

backend.

If the string argument to LogLevel is not one of the above, it must refer to the name of
a custom format, defined earlier using the LogFormat statement. This statement takes two
string arguments: the name to be assigned to the new format, and its definition.

Format definition is a character string composed of ordinary characters (not ‘%’), which
are copied unchanged to the resulting log message, and conversion specifications, each of
which are replaced by a corresponding piece of information about the request or reply.

Conversion specifications are single characters prefixed with a percent sign. Depending
on the specification, an optional conversion argument in curly brackets may appear between
‘% and conversion character.

The following conversion characters are defined:

Chapter 8: Logging 23

Toto

%ha

%A

%B

%b

%D

%h

%H

[Format specifier]
Replaced with the percent sign.

[Format specifier]
Originator IP address of the request. If the request contains X-Forwarded-For header
and TrustedIP ACL is defined, the value of the header is consulted to obtain the IP
address. The value must be a comma-delimited list of intermediate user-agent IP
addresses. To determine the actual user-agent IP, the list is traversed from right to
left, until an IP is found that is not listed in TrustedIP ACL.
If X-Forwarded-For is not present, or TrustedIP is not defined, or the above algo-
rithm does not return an IP address, %a expands to the actual remote IP address the
request came from (same as %h).
The TrustedIP ACL can be defined in global scope, or in ListenHTTP (ListenHTTPS)
section, or in Service section. Most-specific ACL overrides least-specific ones, that
is a TrustedIP defined in Service will be used, if it is defined. If not, the one defined
in listener will be used, etc. The syntax of the TrustedIP statement is the same as
that of ACL, i.e.
TrustedIP "name"
refers to the named ACL name (which must be defined earlier, see Section 4.1.2 [ACL],
page 9), and
TrustedIP
"cidro"
"cidri1"

End
defines the list of trusted IPs in place.

If needed, the ForwardedHeader statement may be used to declare the name of the
header to use instead of X-Forwarded-For. As TrustedIP, this statement can appear
in global, listener, or in service scope.

[Format specifier]
Local IP address of the listener.

[Format specifier]
Size of response in bytes, excluding headers.

[Format specifier]
Same as ‘%B’, but in CLF format, i.e. a dash is used when response size is zero.

[Format specifier]
The time taken to serve the request, in microseconds.

[Format specifier]
Client IP address of the request.

[Format specifier]
The request protocol.

Chapter 8: Logging 24

%{hdr}i [Format specifier]
The contents of ‘hdr:’ header line in the request. Changes made by header modifi-
cation directives affect this.

${hdr}I [Format specifier]
Same as ‘%i’, except that if no such header is present in the request, a dash is substi-
tuted.

%{obj}L [Format specifier]

Location of the pound object that is involved in handling the request. Valid values
for obj are: ‘listener’, ‘service’, and ‘backend’.

The location gives position in the configuration file where the object was defined, and
is formatted as

name:1nl.coll-1n2.col2

where name is the configuration file name, In1 and coll are line and column where
the object definition begins, In2 and col2 are line and column where it ends. Line
and column numbers start with 1.

Jom [Format specifier]
The request method.

h{obj}N [Format specifier]
Name of pound object that is involved in handling the request. Valid values for obj
are: ‘listener’, ‘service’, and ‘backend’.

P [Format specifier]
Thread ID of the serving thread.

hq [Format specifier]
The query string (prepended with a ‘?’) if it exists, otherwise an empty string.

hr [Format specifier]
First line of request.

hs [Format specifier]
Response status code.

h>s [Format specifier]
First line of the response.

ht [Format specifier]
Time the request was received, in the format ‘[18/Sep/2011:19:18:28 -0400]’. The
last number indicates the timezone offset from UTC.

h{format}t [Format specifier]
Time the request was received, in the format specified by the argument (see
Appendix B [Time and Date Formats], page 70). If the format starts with ‘begin:’
(default) the time is taken at the beginning of the request processing. If it starts
with ‘end:’; it is the time after the response from the backend has been sent back

Chapter 8: Logging 25

to the requester. In addition to strftime formats, the following specifications are

recognized:

sec Number of seconds since the Epoch.
msec Number of milliseconds since the Epoch.
usec Number of microseconds since the Epoch.

msec_frac Millisecond fraction of the time.

usec_frac Microsecond fraction of the time.

hT [Format specifier]
The time taken to process the request, in seconds.

%{unit}T [Format specifier]
The time taken to process the request, in a time unit given by unit. Valid units are
‘ms’ for milliseconds, ‘us’ for microseconds, ‘s’ for seconds, and ‘f’ for seconds with
fractional part. Using ‘s’ gives the same result as ‘4T’ without any format; using ‘us’
gives the same result as ‘%D’.

AN [Format specifier]
Remote user if the request was authenticated.

yAY [Format specifier]
The URL path requested. This is affected by request modification directives.

hv [Format specifier]
The listener name.

The table below describes the built-in formats in terms of format definitions:

0
null

1
regular

ll%a %r —_ %>s||
2
extended

"%a %r - %>s (%{Host}i/%{service}N -> Y%{backend}N) %{f}T sec"
3

vhost_combined
"%{Host}I %a - %u %t \"%4r\" %s %b \"%{Referer}i\" \"V{User-Agent}i\""

4
combined

"ha - %u %t \"%r\" %s %b \"Y{Referer}i\" \"%{User-Agent}i\""

Chapter 8: Logging 26

5

detailed (Split in two lines for readability)
"%{Host}I %a - %u %t \"%r\" %s %b \"/%{Referer}i\" \"%{User-Agent}i\"
(%{service}N -> Y{backend}N) %{f}T sec"

27

9 Configuration

A configuration file provides pound with the information necessary for performing its tasks.
Some configuration file statements can be overridden from the command line.

9.1 Lexical structure

Lexically, the file contains tokens of three types: keywords, values, and separators. Blanks,
tabs, newlines and comments, collectively called white space are ignored except as they serve
to separate tokens. Some white space is required to separate otherwise adjacent keywords
and values.

Comments may appear anywhere where white space may appear in the configuration
file. A comment begins with a hash sign (‘#’) and continues to the end of the line.

A keyword is a sequence of ASCII letters, digits and underscores that begins with an
ASCII letter or underscore. Keywords are always case-insensitive.

There are three kinds of values: numeric values (or numbers), boolean values, quoted
strings, and IP addresses.
Numbers A numeric value is a sequence of decimal digits.
Booleans A boolean is one of the following: ‘yes’, ‘true’; ‘on’ or ‘1’, meaning true, and
‘no’, ‘false’, ‘off’, ‘0’ meaning false.

Strings A quoted string or string, for short, is a sequence of characters enclosed in a pair
of double quotes. A backslash (‘\’) appearing within a string acts as an escape
character: if it is followed by a double-quote or another backslash, it forces the
character that follows it to be treated as an ordinary one. For example:

"string with \" character"

A backslash followed by any character other than ‘"’ or ‘\’ is removed and a
warning to that effect is output. For example, the following statement:

user "r\oot"

appearing at line 1 of file pound. cfg will result in the following message:
pound.cfg:1.8: unrecognized escape character

and will be treated as
user "root"

IP addresses
IP addresses are IPv4 or IPv6 addresses in numeric form, or hostnames.

9.2 Syntax

Syntactically, pound configuration is a sequence of statements of two kinds: simple and
compound.

A simple statement or directive consists of a keyword followed by a value, located on a
single line. For example:

user "proxy"

Chapter 9: Configuration 28

There are some simple statements that don’t take any value and thus consist only of a
keyword, e.g.

HTTPS

A compound statement or section encloses one or more other statements (both simple
or compound). It begins with a keyword, optionally followed by a value, both located on a
single line (similar to simple directives), followed by any number of subordinate statements,
and ends with a keyword End on a line by itself. For example:

Control
Socket "/run/pound.sock"
Mode 660
ChangeOwner true

End

Unless specified otherwise, directives may appear in any order.

9.3 String Expansions

String arguments to some configuration statements undergo several expansions before use.
The backreference expansion replaces special notations in the string called backreferences
with corresponding parts of the request recently matched against a regular expression. The
request accessor interpretation inserts some fragments of the request URL into the string.

These expansions are discussed in detail below.

9.3.1 Backreference expansion

Backreference is a construct that refers to a parenthesized group within a regular expres-
sion matched by one of service matching directives (see Section 9.11.1 [Service Selection
Statements], page 48). During backreference expansion, each occurrence of such construct
is replaced with the actual value of that parenthesized group.

Syntactically, backreferences can take two forms. The construct $n, where n is a decimal
number, refers to nth parenthesized subexpression of the most recently matched statement,
and the construct $n(m) refers to nth parenthesized subexpression in the mth recently
matched statement. Numbering of subexpressions starts at 1 ($0 refers to entire matching
string). Numbering of matches starts at 0.

For example, given the following statements

Host -re "www\\.(.+)"
Header -re -icase "“Content-Type: *(.*)"
Path "~“/static(/.*x)?"

$1 refers to the subgroup of Path, $1(1) refers to that of Header, and $1(2) to that of
Host.

Curly braces may be used to avoid incorrectly parsing text fragment that follows the
reference as being its part. This is useful if the reference is immediately followed by a
decimal digit or opening parenthesis, as in: ‘${1} (text)’.

To insert a literal dollar or percent sign in the string, use ‘$$’ or ‘$%’, correspondingly.

Chapter 9: Configuration 29

9.3.2 Request Accessor Interpretation

Request accessor is a syntactical construct of the form:
% [name]

where name denotes a part of the incoming request to access and square brackets are part
of the construct. Accessors are interpreted and replaced with the value of the corresponding
part of the request. Some accessors take an argument, which is specified after accessor name
and is delimited from it by one or more whitespace characters.

The following accessors are defined:

url [Accessor]
Request URL.

path [Accessor]
Request path.

query [Accessor]
Query part.

param name [Accessor]

The value of the query parameter name.

header name [Accessor]
The value of HTTP header name.

host [Accessor]
Hostname part of the Host header. If the latter does not include port number, it is
equivalent to % [header host].

port [Accessor]
If the value of the Host header includes port number, ‘%[port]’ expands to port
number with the leading colon character. Otherwise, it expands to empty string.

9.4 Global directives

Global directives configure the program operation as a whole. They may appear anywhere
at the global scope of the configuration file, although it is customary for them to be at its
start.

9.4.1 Runtime directives

Daemon bool [Global directive]
When set to ‘true’ (the default), pound will detach itself from the controlling ter-
minal after successful parsing of the configuration file and continue operating in the
background.

When set to ‘false’, pound will continue operating in the foreground.
This setting can be overridden by the -F and -e command line options.

Group "group_name" [Global directive]
Sets the group pound will run as. If not set, the primary group of the user (as set by
the User directive) will be used.

Chapter 9: Configuration 30

PIDFile "filename" [Global directive]
Sets the name of the file where to store program PID. This can be also be set from
command line, using -p command line option (see Chapter 3 [Usage], page 4).

Notice the following:

1. When running with a supervisor, this file holds PID of the supervisor process.
Otherwise, it holds PID of the main This means it is always suitable for signalling
the program using the traditional kill ‘cat filename‘ technique.

2. Before shutting down, pound removes this file. However, it may fail to do so if
it switches to privileges of another user after startup (at least one of User or
Group are set in the configuration file) and the file is stored in a directory whose
permissions forbid write access for that user.

Supervisor bool [Global directive]
When running in daemon mode, start a supervisor process. This process, in turn,
will start main pound process and will further monitor it, restarting it if it fails.

The default is true.

RootJail "directory" [Global directive]
If this directive is present, pound will use the system chroot call to set the root
directory of the process to that specified by directory. After that, the program won’t
be able to access any files outside that directory.

Before chrooting, pound makes the necessary preparations to be able to access the files
it needs during operation, in particular user databases supplied with the BasicAuth
statements (see Section 4.5 [Authentication], page 12).

User "user_name" [Global directive]
Configures the user pound will run as.

9.4.2 Worker Settings

WorkerMinCount n [Global directive]
Sets minimum number of worker threads that must always be running. The default
is 5. See Chapter 7 [Worker model], page 21.

WorkerMaxCount n [Global directive]
Sets maximum number of worker threads. The default is 128. See Chapter 7 [Worker
model], page 21.

WorkerIdleTimeout n [Global directive]
Sets idle timeout for a worker thread, in seconds. Default is 30 seconds. See Chapter 7
[Worker model], page 21.

Threads n [Global directive]
This statement, retained for backward compatibility with previous versions of pound,
is equivalent to:

WorkerMinCount n
WorkerMaxCount n

Chapter 9: Configuration 31

9.4.3 Proxy Tuning Directives

BackendStats bool [Global directive]
Whether to enable backend statistics collection. Backend statistics consists of the
following values:

1. Total number of requests processed by this backend.
2. Average time per request.
3. Standard deviation of the average time per request.

If enabled, these values are made available via poundctl (see [poundctl list], page 58)
and telemetry output (see [Metrics], page 54).

Balancer algo [Global directive]
Sets the request balancing algorithm to use. Allowed values for algo are:

random Use weighted random balancing algorithm.
iwrr Use interleaved weighted round robin balancing.

See Chapter 6 [Balancer], page 18, for a detailed discussion of these algorithms.

The Balancer statement in global scope applies to all Service definitions in the file
that don’t contain Balancer definitions of their own.

HeaderOption opt ... [Global directive]
Sets default header addition options. One or more arguments are allowed, each being
one of:
of f Disable additional headers.
forwarded

Add X-For-warded-For, X-Forwarded-Proto, and X-Forwarded-Port
headers.
ssl Pass information about SSL certificates in a set of X-SSL-* headers. This

will add the following headers:

X-SSL-Cipher
SSL version followed by a slash and active cipher algorithm.

X-SSL-Certificate
The full client certificate (multi-line).

X-SSL-Issuer
Information about the certificate issuer (CA).

X-SSL-Subject
Information about the certificate owner.

X-SSL-notAfter
End of validity date for the certificate.

X-SSL-notBefore
Start of validity date for the certificate.

Chapter 9: Configuration 32

X-SSL-serial
Certificate serial number (in decimal).

The default is:
HeaderOption forwarded ssl

This setting can be overridden for a particular listener using the HeadOption within
it.

9.4.4 SSL Settings

SSLEngine "name" [Global directive]
Use an OpenSSL hardware acceleration card called name. Available only if OpenSSL-
engine is installed on your system.

ECDHcurve "name" [Global directive]
Use the named curve for elliptical curve encryption.

9.4.5 Regular Expression Settings

RegexType type [Global directive]
Sets the type of regular expressions to use in request matching statements. Allowed
values for type are: posix and pcre (or perl), case-insensitive. The latter requires
compilation time support.

The selected regular expression type remains in effect for all request matching di-
rectives that follow this statement, until next RegexType statement or end of the
configuration file, whichever occurs first.

Regular expression type can be set individually for a directive, using the -pcre or
-posix option (see Table 9.2).

See Section 4.1.1 [Regular Expressions], page 9, for a detailed discussion.

IgnoreCase bool [Global directive]
Ignore case when doing regex matching (default: ‘false’). This directive sets the
default for the following service matching directives: URL, Path, QueryParam, Query,
StringMatch, as well as for the DeleteHeader modification directive. Its value can
be overridden for specific services.

This statement is deprecated and will be removed in future versions. Please, use the
-icase option to the matching directive instead (see Table 9.2).

9.4.6 ACL Definition

ACL "name" [Global directive]
Define a named access control list. An ACL is a list of network addresses in CIDR
notation, one address per line, terminated with an End directive on a line by itself.
E.g.

ACL "secure"
"192.0.2.0/26"
"203.0.113.0/24"

End

Chapter 9: Configuration 33

The Include directive is allowed within the ACL section. Named ACLs can be used
in Service definitions to limit access to services from certain IP addresses only. See
Section 4.1.2 [ACL], page 9, for a detailed discussion of this.

9.5 File inclusion

Include "file" [Global directive]
Include file as if it were part of the configuration file. If file is a relative file name, it
will be looked in the include directory (see below).

This directive is allowed both at topmost level and in any subsections of the configu-
ration file.

IncludeDir "dir" [Global directive]

Set the include directory, i.e. the directory where pound looks for relative file names
that appear in other configuration directives: Include, BasicAuth, ErrorFile (or
Err400 through Err503), as well as in the argument to -~file option in service match-
ing directives (see [-file], page 43).
The default value is the system configuration directory as set at compile time (you
can check its value in the output of pound -V). This initial value can be changed in
the command line using the -W include-dir=dir command line option or reset to
the current working directory using the -W no-include-dir option (see Chapter 3
[Usage], page 4).

9.6 Logging configuration

LogFacility name [Global directive]

LogFacility - [Global directive]
Sets the syslog facility to use for logging. Allowed names are: ‘auth’, ‘authpriv’,
‘cron’, ‘daemon’, ‘ftp’, ‘kern’, ‘lpr’. ‘mail’, ‘news’, ‘user’. ‘uucp’, and ‘locall’
through ‘local7’.
The second form configures default log destination. If pound runs in foreground, log
messages with priority LOG_DEBUG and LOG_INFO go to stdout, and messages with the
remaining priorities are printed to stderr. If pound runs as a daemon, log messages
go to the syslog facility ‘daemon’.

LogFormat "name" "format_def" [Global directive]
Define request logging format. name is a string uniquely identifying this format, and
format_def is the format string definition. See Chapter 8 [Logging], page 22, for a
detailed description of format definition syntax.

LogLevel "name" [Global directive]

LogLevel n [Global directive]
Specify the format to use to log HT'TP requests. name is a name of a custom format,
defined earlier using the LogFormat directive, or one of six built-in format names.

If numeric argument is used, it refers to a built-in format by its number (0 through
5).
See Chapter 8 [Logging], page 22, for a detailed description of HT'TP request logging.

Chapter 9: Configuration 34

LogTag "string" [Global directive]
Sets the string to tag syslog messages with. By default, it is the name of the program
(more precisely, the name which was used to start it).

ForwardedHeader "name" [Global directive]
Defines the name of the HT'TP header that carries the list of proxies the request has
passed through. Default value is X-Forwarded-For. This header is used to determine
the originator IP address for logging. See [%a], page 23, for details.

TrustedIP [Global directive]
Defines a list of trusted proxy IP addresses, which is used to determine the originator
IP. See [%a], page 23, for details.

This statement is a special form of ACL statement, described below. It can appear
in two forms: as a section or as a directive. When used as a section, it is followed
by a list of one or more CIDRs each appearing on a separate line. The End keyword
terminates the statement, e.g.:

TrustedIP
"127.0.0.1/8"
"10.16.0.0/16"

End

In directive form, this statement takes a single argument, the name of an access
control list defined earlier using the ACL statement, e.g.

TrustedIP "proxy_addresses"

Anonymise [Global directive]
Anonymize [Global directive]
When logging, replace the last byte of client IP addresses with 0.

Default: log the client address in full.

9.7 Control socket settings

Pound can be instructed to listen on a UNIX socket for management requests, which will
allow you to obtain information about the running instance, change state of configured
listeners, services, and backends, etc. These requests are normally issued by the poundctl
utility (see Chapter 10 [poundctl], page 57).

Properties of this control socket are configured via the Control statement. It has two
forms: directive and section.

Control "filename" [Global directive]
Create a UNIX socket filename and listen on it for management requests. The file
will be owned by the user that started pound (normally ‘root’) and have mode 0600.

In section form, the Control statement allows for specifying file mode and, to certain
extent, socket file ownership. The section can contain the following statements:

Socket "filename" [Control statement]
Specifies the name of the socket file to use. This is the only mandatory statement in
the section form.

Chapter 9: Configuration 35

Mode octal [Control statement]
Sets the mode of the socket file.

ChangeQOwner bool [Control statement]
This statement takes effect if at least one of User or Group global statements is used.
When set to true it will change the owner of the socket file to that specified by those
two statements.

An example of using the Control section:

Control
Socket "/run/pound.sock"
Mode 660
ChangeOwner true

End

9.8 Timeouts

Directives discussed in this section set various timeout values. Their argument is an integer
expressing the value in seconds.

Alive n [Global directive]
Specify how often should pound check for the status of backend servers marked as
dead (i.e. inaccessible). It is a good idea to set this as low as possible — it will find
resurrected hosts faster. However, if you set it too low it will consume resources.

Default is 30 seconds.

Client n [Global directive]
Specify for how long pound will wait for a client request (default: 10 seconds). It will
drop the connection if client doesn’t send any data within this interval.

This value can be overridden for specific listeners.

TimeOut n [Global directive]
Specify for how long pound will wait for the backend to respond (default: 15 seconds).

This value can be overridden for specific backends.

ConnTO n [Global directive]
Specify for how long pound will wait for a connection to a backend to be established.
Default is the same as the TimeOut value.

This value can be overridden for specific backends.

WSTimeOut n [Global directive]
Specify for how long pound will wait for data from either backend or client in a
connection upgraded to WebSocket protocol. Default is 600 seconds.

This value can be overridden for specific backends.

Grace n [Global directive]
How long should pound continue to answer existing connections after a receiving
a ‘INT’ or ‘HUP’ signal (default: 30 seconds). The configured listeners are closed
immediately. You can bypass this behaviour by stopping pound with a ‘TERM or
‘QUIT’ signal, in which case the program exits without any delay.

Chapter 9: Configuration 36

9.9 ListenHTTP

The ListenHTTP section declares a listener operating in plaintext HT'TP mode. The section
declaration begins with the keyword ListenHTTP optionally followed by a string supplying
symbolic name for that listener, e.g.:

ListenHTTP "main"

End
The symbolic name can be used in log messages (see [log format], page 22) and in
poundctl (see Chapter 10 [poundctl], page 57) requests to identify that listener. If the
name is not supplied, the listener can be identified by its ordinal number (0-based) in the
configuration file.

9.9.1 Listener address

Address address [ListenHTTP directive]
The IP address that pound will listen on. This can be a numeric IPv4 or IPv6 address,
a symbolic host name that must be resolvable at runtime (unless the ~Wno-dns option
is used), or a full pathname of a UNIX socket. To listen on all available interfaces,

use ‘0.0.0.0".
Either Address or SocketFrom (see below) must be present in each ListenHTTP sec-
tion.

Port n [ListenHTTP directive]

The port number or service name (as per /etc/services that this listener will listen
on. This directive must be present, unless the Address directive specifies a UNIX
socket.

SocketFrom "pathname" [ListenHTTP directive]
Read the socket to listen on from the UNIX socket supplied by pathname. If this
parameter is supplied, neither Address nor Port may be used. This parameter is
intended for use in pound testsuite.

9.9.2 Listener-specific limits

Client n [ListenHTTP directive]
Specify for how long pound will wait for a client request (default: 10 seconds). It will
drop the connection if client doesn’t send any data within this interval.

This statement overrides the global timeout value (see Section 9.8 [Timeouts], page 35)
for this particular listener.

MaxRequest n [ListenHTTP directive]
Limits the maximum allowed size of incoming requests. A request bigger than that
will be responded with status 413.

By default, there is no limit on the request size.

MaxURI n [ListenHTTP directive]
Limits the maximum allowed length of incoming request URI. A request with an URI
longer than that will be responded with status 414.

By default, there is no limit on the URI length.

Chapter 9: Configuration 37

CheckURL "pattern" [ListenHT TP directive]
Define a pattern that must be matched by each request sent to this listener. A request
that does not match will be returned a 501 status.

xHTTP n [ListenHTTP directive]
Defines which HT'TP method are accepted. The possible values are:
0 Accept only standard HTTP methods: GET, POST, HEAD. This is the
default.
1 Allow also extended HTTP methods: PUT, PATCH, DELETE.
2 Additionally allow standard WebDAV methods: LOCK, UNLOCK, PROPFIND,

PROPPATCH, SEARCH, MKCOL, MOVE, COPY, OPTIONS, TRACE, MKACTIVITY,
CHECKOUT, MERGE, REPORT.

3 Additionally allow MS extension WebDAV methods: SUBSCRIBE,
UNSUBSCRIBE, NOTIFY, BPROPFIND, BPROPPATCH, POLL, BMOVE, BCOPY,
BDELETE, CONNECT.

9.9.3 Error definitions

When pound returns an error status, it uses built-in error-specific description code and
status page template. These values can be customized using the ErrorFile statement.

ErrorFile code "filename" [ListenHTTP directive]
Read HTML page for HT'TP status code code from file filename.

The code argument is a three-digit HT'TP response status, and filename is the name
of a file which supplies text of the error page to be returned. The file is read once, at
program startup.

For compatibility with pound versions up to 4.11, the following statement is also recog-
nized:

Errnnn "filename"
where nnn is a three-digit HTTP status code. This statement is entirely equivalent to
ErrorFile nnn "filename"

Pound produces only a subset of all possible status codes, so not all nnn codes are
allowed. The discussion below lists available HT'TP codes, along with the error description
and default error page text.

400 [HTTP status]
‘Bad Request’

Your browser (or proxy) sent a request that this server could not under-
stand.

401 [HTTP status]
‘Unauthorized’

This server could not verify that you are authorized to access the doc-
ument requested. Either you supplied the wrong credentials (e.g., bad

Chapter 9: Configuration 38

403

404

405

413

414

500

501

503

password), or your browser doesn’t understand how to supply the cre-
dentials required.

[HTTP status]
‘Forbidden’

You don’t have permission to access this resource. It is either read-
protected or not readable by the server.

[HTTP status]
‘Not Found’

The requested URL was not found on this server.

[HTTP status]
‘Method Not Allowed’

The request method is not supported for the requested resource.

[HTTP status]
‘Payload Too Large’

The request content is larger than the proxy server is able to process.

[HTTP status]
‘URI Too Long’

The length of the requested URL exceeds the capacity limit for this server.

[HTTP status]
‘Internal Server Error’

The server encountered an internal error and was unable to complete your
request.

[HTTP status]
‘Not Implemented’

The server does not support the action requested.

[HTTP status]
‘Service Unavailable’

The server is temporarily unable to service your request due to mainte-
nance downtime or capacity problems. Please try again later.

Chapter 9: Configuration 39

9.9.4 Listener logging

Following statements are similar to the ones described in Section 9.6 [Logging configuration],
page 33, but apply only to the listener they appear in.

LogLevel "name" [ListenHTTP directive]

LogLevel n [ListenHTTP directive]
Specify the format to use to log HTTP requests. name is a name of a custom format,
defined earlier using the LogFormat directive, or one of six built-in format names.

If numeric argument is used, it refers to a built-in format by its number (0 through
5).
See Chapter 8 [Logging], page 22, for a detailed description of HT'TP request logging.

ForwardedHeader "name" [ListenHTTP directive]
Defines the name of the HI'TP header that carries the list of proxies the request has
passed through. Default value is X-Forwarded-For. This header is used to determine
the originator IP address for logging. See [%al, page 23, for details.

TrustedIP [ListenerHTTP directive]
Defines a list of trusted proxy IP addresses, which is used to determine the originator
IP. See [%a], page 23, for details.

9.9.5 Request Modification

The statements discussed in this subsection modify incoming requests prior to passing
them to the backend. These same set of statements can also be used in Service section
(see Section 9.11 [Service|, page 47). When appearing in both sections, the directive from
ListenHTTP (ListenHTTPS) section are applied first, followed by directives from the Service
section. Directives from the same section are applied in order of their appearance.

RewriteDestination bool [ListenerHTTP directive]
If set to ‘true’, the Destination: request header will be changed to point to the
backend with the correct protocol.

SetURL "url" [ListenerHTTP directive]
Set the URL of the incoming request to url.

SetPath "value" [ListenerHTTP directive]
Set the path part of the URL to the given string.

SetQuery "value" [ListenerHTTP directive]
Set the query part of the URL to the given string. Value must be a valid query with
the special characters properly encoded using percent encoding.

SetQueryParam "name" "value" [ListenerHTTP directive]
Set the query parameter name to the value. Value must be properly encoded if it
contains reserved characters.

SetHeader "name: value" [ListenerHTTP directive]
HeaderAdd "name: value" [ListenerHTTP directive]

Chapter 9: Configuration 40

AddHeader "name: value" [ListenerHTTP directive]
Sets the HTTP header. If the header name already exists, it will be overwritten.
Otherwise, new header will be added to the end of the header list.

The HeaderAdd and AddHeader forms are retained for backward compatibility with
earlier pound versions. You are advised against using them.

DeleteHeader [options] "pattern" [ListenerHTTP directive]
Remove from the request all headers matching pattern. The HeaderRemove and
HeadRemove forms are retained for backward compatibility with earlier pound ver-
sions. You are advised against using them.

By default, pattern is treated as extended POSIX regular expression. The options
argument can be used to alter this. It consists of zero or more option flags from the
following list:

Flag Meaning

-beg Exact match at the beginning of string (prefix match).
-case Case-sensitive comparison.

-contain Delete each header where "pattern" is a substring.

-end Exact match at the end of string (suffix match).

-exact Use exact string match.

-icase Case-insensitive comparison.

-pcre Use Perl-compatible regular expression. see Section 4.1.1

[Regular Expressions|, page 9.
-perl Same as -pcre.

-posix Use POSIX extended regular expression. see Section 4.1.1
[Regular Expressions|, page 9.

-re Use regular expression match. This assumes the default
regular expression type, as set by the RegexType directive
(see Section 4.1.1 [Regular Expressions|, page 9).

Table 9.1: Header matching flags for DeleteHeader directive

The following options are mutually exclusive: -beg, ~contain, -end, —exact, -pcre
(-perl), -posix, -re. If more than one of these are used, the last one takes effect.

Chapter 9: Configuration 41

HeaderRemove "pattern" [ListenerHTTP directive]
HeadRemove "pattern" [ListenerHTTP directive]
These are obsolete keywords, equivalent to

DeleteHeader -icase "pattern"

9.9.5.1 The rewrite statement

The Rewrite block statement associates one or more header modification directives dis-
cussed above with request matching directives, so that request modification takes place
only when the request matches certain conditions.

Syntactically, a Rewrite section is:

Rewrite [request]
conditional_directives...
modification_directives...

[Else
conditional_directives...
modification_directives...]
End

where conditional_directives represents one or more request conditionals described below
and modification_directives stands for one or more header modification directives. The Else
part is optional; any number of Else blocks can be supplied, thus providing for conditional
branching.

The Rewrite statement is processed sequentially until a branch is found whose condi-
tional_directives yield ‘true’, or End is encountered. If a matching branch is found, its
modification_directives are applied to the request.

Request matching directives or request conditionals are special statements that, being
applied to a HTTP request, yield ‘true’ or ‘false’ depending on whether the request
satisfies the condition described in the directive. The following conditionals are available:

ACL "name" [Request Conditional]
Returns ‘true’ if the source IP matches one of the CIDRs from the named access
control list name. The ACL itself must have been defined earlier (see Section 9.4.6
[ACL definition], page 32).

See Section 4.1.2 [ACL], page 9, for a detailed discussion.

ACL [Request Conditional]
This statement defines an unnamed ACL to match the source IP against. This line
must be followed by one or more lines defining CIDRs, as described in Section 9.4.6
[ACL definition], page 32. The ACL definition is finished with an End keyword on a
line by itself.

Semantically, this statement is equivalent to the named ACL reference described
above.
See Section 4.1.2 [ACL], page 9, for a detailed discussion.

BasicAuth "filename" [Request Conditional]
Evaluates to ‘true’, if the incoming request passes basic authorization as described
in RFC 7617. Filename is the name of a plain text file containing usernames and

Chapter 9: Configuration 42

passwords, created with htpasswd or similar utility. Unless the name starts with a
slash, it is taken relative to the IncludeDir directory (see [include directory], page 33).
The file is cached in the memory on the first authorization attempt, so that further
authorizations do not result in disk operations. The file will be re-scanned if pound
notices that its modification time has changed.

See Section 4.5 [Authentication], page 12.

Header [options| "pattern" [Request Conditional]
Yields ‘true’, if the request contains at least one header matching the given pattern.
By default, pattern is treated as case-insensitive POSIX extended regular expression.
This can be changed by options, described below.

Host [options| "hostname" [Request Conditional]
Evaluates to ‘true’, if the Host header matches hostname. In the absence of options,
case-insensitive exact match is assumed, i.e. this construct is equivalent to

Header "Host:[[:space:]]*qhost"

where ghost is the hostname argument in quoted form, i.e. with all characters that
have special meaning in regular expressions escaped.

See Table 9.2, for a detailed discussion of options and their effect on matching.

This statement is provided to facilitate handling of virtual hosts. See Section 4.1
[Service selection], page 6, for details.

Path [options| "pattern" [Request Conditional]
Returns ‘true’, if the path part of the incoming request matches pattern.

Query [options| "pattern" [Request Conditional]
Returns ‘true’, if the query part of the incoming request matches pattern. The
argument must be properly percent-encoded, if it contains whitespace or other non-
printable characters.

QueryParam "name" [options| "pattern" [Request Conditional]
Returns ‘true’, if the value of the query parameter name matches pattern.

See Table 9.2, for a detailed discussion of options and their effect on matching.

StringMatch "string" [options| "pattern" [Request Conditional]
Expands string as described in Section 9.3 [String Expansions|, page 28, and matches
the resulting value against pattern.

URL [options| "pattern" [Request Conditional]
Matches URL of the request. Pattern is treated as case-sensitive extended regular
expression, unless instructed otherwise by options (see below).

In these directives, options is a whitespace-delimited list of zero or more flags from the
following table:

Chapter 9: Configuration

Flag
-beg
-case
—-contain
—end
-exact

-file

-icase

-pcre

-perl

-posix

-re

43

Meaning

Exact match at the beginning of string (prefix match).
Case-sensitive comparison.

Match if pattern is a substring of the original value.

Exact match at the end of string (suffix match).

Use exact string match.

Treat pattern as the name of a file to read patterns from.
If the name is relative, it will be looked up in the [include
directory], page 33. Patterns are read from the file line by
line. Leading and trailing whitespace is removed. Empty
lines and comments (lines starting with #) are ignored.
Case-insensitive comparison.

Use Perl-compatible regular expression. see Section 4.1.1

[Regular Expressions|, page 9.
Same as -pcre.

Use POSIX extended regular expression. see Section 4.1.1

[Regular Expressions|, page 9.

Use regular expression match. This assumes the default reg-
ular expression type, as set by the RegexType directive (see
Section 4.1.1 [Regular Expressions|, page 9).

Table 9.2: Conditional directive flags

The following options are mutually exclusive: -beg, -contain, -end, -exact, -pcre
(-perl), -posix, -re. If more than one of these are used, the last one takes effect.

Placing the keyword Not before a header matching directive reverts its meaning. For
example, the following will match any request whose URL does not begin with /static/:

Not URL -beg "/static/"

The Match block statement can be used to join multiple header matching directives. Its

syntax is:

Match op

End

Chapter 9: Configuration 44

where ... stands for any number of matching directives, and op is a boolean operation:
AND or OR (case-insensitive). For example, the statement

Match OR
Host "www.example.net"
Path -beg "/ssl"

End

will match if the request Host header has the value ‘www.example.net’, or the path part of
its URL starts with ‘/ssl’. In contrast, the statement below:

Match AND
Host "www.example.net"
Path -beg "/ssl"

End

will match only if both these conditions are met. As a syntactical short-cut, two or more
matching statements appearing outside of Match are joined by an implicit logical AND, so
that the latter example is equivalent to:

Host "www.example.net"
Path -beg "/ssl"

The Match statement, like any other matching directive, can be prefixed with Not, which
reverts its meaning.

9.9.6 Response Modification

RewriteLocation n [ListenerHTTP directive]
This statement controls whether Location: and Content-location: headers in
HTTP responses are modified before sending them back to the client.

If n is 0, both headers are left intact.

If nis 1, the headers are changed as follows. If they point to the backend itself or
to the listener (but with the wrong protocol), the request host name will be used
instead. This is the default.

If nis 2, do the same, but compare only the backend address; this is useful for
redirecting a request to an HTTPS listener on the same server as the HT'TP listener.

To check whether the location points to the listener or to the backend, its hostname
part is resolved and the obtained IP address (or addresses) are compared with that
of listener or backend. This process is affected by the dns feature setting (see [dns],
page 5). If it is disabled (-W no-dns option is given), no resolving takes place. In this
case the location is deemed to point to the listener if its hostname part matches that
of the incoming request. For backends, the hostname is compared with the value of
the ServerName setting of that backend (see [ServerName|, page 53), if any.

9.9.6.1 The Rewrite response statement.

A special form of the Rewrite statement is provided for modifying headers in the response
obtained from a regular backend or generated with a Error backend, before sending them
back to the requesting server:

Chapter 9: Configuration 45

Rewrite response
conditional_directives...
modification_directives...

[Else
conditional_directives...
modification_directives...]
End

The conditional directives allowed for use in this statement are:

Header [options| "pattern" [Rewrite response conditional]
Returns ‘true’, if the response contains at least one header matching the given
pattern.

StringMatch "string" [options| "pattern" [Rewrite response conditional]

Expands string as described in Section 9.3 [String Expansions], page 28, and matches
the resulting value against pattern.

Both conditionals treat their pattern argument as case-insensitive POSIX extended reg-
ular expression. See Table 9.2, for a discussion of available options.

The following response modification directives are defined:

DeleteHeader [options] "pattern" [Response modification]
Remove matching headers from the response. By default, pattern is treated as ex-
tended POSIX regular expression. Use options to alter this behavior. See Table 9.1,
for a list of available options.

SetHeader "name: value" [Response modification]
Sets the HTTP response header. Argument undergoes string expansion (See
Section 9.3 [String Expansions|, page 28). If the header name already exists, it will
be overwritten. Otherwise, new header will be added to the end of the header list.

9.9.7 Service definitions

The Service section defines rules that decide to which backend to route requests received
by that listener. Any number of Service section can be present. When a request is received,
the listener iterates over all services in the order of their appearance in the configuration
and applies the section rules to the request. If the rules match the request, the request is
forwarded to the backend defined in that section.

See Section 9.11 [Service|, page 47, for a detailed discussion of the Service statement.

ACME dir [ListenHTTP statement)]
This statement defines a special service with a built-in backend for handling ‘ACME’
challenge requests. See Section 5.1 [ACME], page 15, for a detailed discussion of its
use.

The dir argument defines the directory where to look for challenge files.

Chapter 9: Configuration 46

9.10 ListenHTTPS

The ListenHTTPS section defines a listener that operates in HI'TPS. The section declaration
begins with the keyword ListenHTTPS optionally followed by a string supplying symbolic
name for that listener:

ListenHTTPS "main"

End

The purpose of the symbolic name is the same as in ListenHTTP statement. All keywords
defined for ListenHTTP can be used for ListenHTTPS as well. See Section 9.9 [ListenHTTP],
page 36, for a detailed discussion of these.

Statements specific for this section are:

Cert "filename" [ListenHTTPS]
Specifies the server certificate. Filename is either a certificate file name, or the name
of a directory containing certificate files.

A certificate file is a file containing the certificate, possibly a certificate chain and the
signature for this server, in that order.

This directive is mandatory within ListenHTTPS.

Multiple Cert directives are allowed. If multiple directives are used, the first one is
the default certificate, with additional certificates used if the client requests them.

The ordering of the directives is important: the first certificate where the CN matches
the client request will be used, so put your directives in the most-specific-to-least
specific order (i.e. wildcard certificates after host-specific certificates).

Cert directives must precede all other SSL-specific directives.

ClientCert mode depth [ListenHTTPS]
Specifies whether the listener must ask for the client’s HTTPS certificate. Allowed
values for mode are:

0. Never ask for the certificate (the default).
1. Ask for the client certificate.
2. Ask and fail, if no certificate was presented.
3. Ask but do not verify.
Depth is the depth of verification for a client certificate (up to 9). The default depth

limit is 9, allowing for the peer certificate and additional 9 CA certificates that must
be verified.

Disable proto [ListenHTTPS]
Disable the SSL protocol proto and all lower protocols as well. Allowed values for
proto are: SSLv2, SSLv3, TLSv1, TLSv1_1, TLSv1_2.

For example:
Disable TLSvl
This disables SSLv2, SSLv3 and TLSv1, thus allowing only TLSv1_1 and TLSv1_2.

Chapter 9: Configuration 47

Ciphers "cipher_list" [ListenHTTPS]
This is the list of ciphers that will be accepted by the SSL connection; it is a string in
the same format as in OpenSSL ciphers and SSL_CTX_set_cipher_list functions.

SSLHonorCipherOrder bool [ListenHTTPS]
If set true, the server will broadcast a preference to use ciphers in the order supplied
in the Ciphers directive. If the value is false, the server will accept any cipher from
the Ciphers list. Default value is false.

SSLAllowClientRenegotiation mode [Listen HTTPS]
If mode is 0, client initiated renegotiation will be disabled. This will mitigate DoS
exploits based on client renegotiation, regardless of the patch status of clients and
servers related to Secure renegotiation. If mode is 1, secure renegotiation is supported.
If mode value is 2, insecure renegotiation is supported.

The default value is 0.

CAlist "filename" [ListenHTTPS]
Set the list of trusted CA’s for this server. The filename is the name of a file con-
taining a sequence of CA certificates (in PEM format). The names of the defined CA
certificates will be sent to the client on connection.

VerifyList "filename" [ListenHTTPS]
Set the certificate authority list. The filename is the name of a file with CA root
certificates, in PEM format.

Please note, that there is an important difference between the CAlist and the
VerifyList. The CAlist tells the client (browser) which client certificates it should send.
The VerifyList defines which CAs are actually used for the verification of the returned
certificate.

CRL1list "filename" [ListenHTTPS]
Set the Certificate Revocation List file. Filename is the name of a file that contains
the CRLs (in PEM format).

NoHTTPS11 mode [ListenHTTPS]
Behave like an HTTP/1.0 server for HT'TPS clients. If mode is 0, always conform to
HTTPS/1.1. If it is 1, do not allow multiple requests on SSL connections. If the value
is 2 (default), disable multiple requests on SSL connections only for MSIE clients.

9.11 Service

The Service statements define backends to use and conditions a request should satisfy in
order to be routed to these backends. These statements can appear both within ListenHTTP
(ListenHTTPS) sections and outside of them. When processing an incoming request, the
listener will first try to match it against services defined within it. If none of these services
matches the request, it will try to match it against services defined in the top level. If a
matching service is found, it will be used to process the request. Otherwise a 503 (Service
Unavailable) response will be returned.

Chapter 9: Configuration 48

A service is defined by a section statement that begins with the Section keyword,
followed by service definition statements and terminated by End on a line by itself:

Service "name"

End

Optional name argument assigns a symbolic name to the service. That name is used
to identify the service in diagnostic and access log messages (see [log format]|, page 22),
metric output (see [Metrics], page 54), and in poundctl requests (see Chapter 10 [poundctl],
page 57). In the absence of an assigned name, the ordinal number of the service in the
enclosing section is used as its identifier. Service numbers start at 0.

Following subsections discuss statements that can be used in Service sections.

9.11.1 Service Selection Statements

Service selection statements define conditions an incoming request must satisfy in order to
be handled by this service.

ACL "name" [Service Conditional]
Returns ‘true’ if the source IP of the request matches one of the CIDRs from the
named access control list name. The ACL itself must have been defined earlier (see
Section 9.4.6 [ACL definition], page 32).

See Section 4.1.2 [ACL], page 9, for a detailed discussion.

ACL [Service Conditionall
This statement defines an unnamed ACL to match the source IP against. This line
must be followed by one or more lines defining CIDRs, as described in Section 9.4.6
[ACL definition|, page 32. The ACL definition is finished with an End keyword on a
line by itself.

Semantically, this statement is equivalent to the named ACL reference described
above.

See Section 4.1.2 [ACL], page 9, for a detailed discussion.

BasicAuth "filename" [Service Conditional]
Evaluates to ‘true’, if the incoming request passes basic authorization as described
in RFC 7617. Filename is the name of a plain text file containing usernames and
passwords, created with htpasswd or similar utility. Unless the name starts with a
slash, it is taken relative to the IncludeDir directory (see [include directory], page 33).
The file is cached in the memory on the first authorization attempt, so that further
authorizations do not result in disk operations. The file will be rescanned if pound
notices that its modification time has changed.

See Section 4.5 [Authentication], page 12.

Header [options| "pattern" [Service Conditional]
Yields ‘true’, if the request contains at least one header matching the given pattern.
By default, pattern is treated as case-insensitive POSIX extended regular expression.
This can be changed by options, described below.

Chapter 9: Configuration 49

Host [options| "hostname" [Service Conditional]
Evaluates to ‘true’, if the Host header matches hostname. In the absence of options,
case-insensitive exact match is assumed, i.e. this construct is equivalent to

Header "Host:[[:space:]]l*ghost"

where ghost is the hostname argument in quoted form, i.e. with all characters that
have special meaning in regular expressions escaped.

See Table 9.2, for a detailed discussion of options and their effect on matching.

This statement is provided to facilitate handling of virtual hosts. See Section 4.1
[Service selection], page 6, for details.

Path [options| "pattern" [Service Conditional]
Returns ‘true’, if the path part of the incoming request matches pattern.

Query [options| "pattern" [Service Conditional
Returns ‘true’, if the query part of the incoming request matches pattern. The
argument must be properly percent-encoded, if it contains whitespace or other non-
printable characters.

QueryParam "name" [options| "pattern" [Service Conditional]
Returns ‘true’, if the value of the query parameter name matches pattern.

See Table 9.2, for a detailed discussion of options and their effect on matching.

StringMatch "string" [options| "pattern" [Service Conditional]
Expands string as described in Section 9.3 [String Expansions|, page 28, and matches
the resulting value against pattern.

URL [options] "pattern" [Service Conditionall
Matches URL of the request. Pattern is treated as case-sensitive extended regular
expression, unless instructed otherwise by options (see below).

The options argument in the directives discussed above defines the comparison algorithm
used. It consists of one or more flags described in Table 9.2.

Placing the keyword Not before a header matching directive reverts its meaning. For
example, the following will match any request whose URL does not begin with /static/:

Not URL -beg "/static/"

The Match block statement can be used to join multiple header matching directives. Its
syntax is:

Match op

End

where . .. stands for any number of matching directives, and op is a boolean operation: AND
or OR (case-insensitive). See [Match in service statement], page 8, for a detailed discussion
with examples.

Chapter 9: Configuration 50

9.11.2 Request and Response Modification

These statements modify incoming requests prior to passing them to the backend. A similar
set of statements can be used in listeners (see Section 9.9.5 [Request Modification|, page 39).
In case both the listener and service contain request modification statements, those from
the listener are applied first, followed by the ones from the service.

SetURL "url" [Service directive]
Set the URL of the incoming request to url.

SetPath "value" [Service directive]
Set the path part of the URL to the given string.

SetQuery "value" [Service directive]
Set the query part of the URL to the given string. Value must be a valid query with
the special characters properly encoded using percent encoding.

SetQueryParam "name" "value" [Service directive]
Set the query parameter name to the value. The value must be properly encoded if
it contains reserved characters.

SetHeader "name: value" [Service directive]
HeaderAdd "name: value" [Service directive]
AddHeader "name: value" [Service directive]

Sets the HT'TP header. If the header name already exists, it will be overwritten.
Otherwise, new header will be added to the end of the header list.

The HeaderAdd and AddHeader forms are retained for backward compatibility with
earlier pound versions. You are advised against using them.

DeleteHeader [options] "pattern" [Service directive]
HeaderRemove [options] "pattern" [Service directive]
HeadRemove [options] "pattern" [Service directive]

Remove from the request all headers matching pattern. The HeaderRemove and
HeadRemove forms are retained for backward compatibility with earlier pound ver-
sions. You are advised against using them.

By default, pattern is treated as extended POSIX regular expression. The options
argument can be used to alter this. It consists of zero or more option flags, described
in Table 9.1.

Rewrite [request | response | ... End [Service statement]
This block statement associates one or more header modification directives discussed
above with request matching directives, so that request modification takes place only
when the request matches certain conditions.

By default Rewrite statements apply to incoming requests. The subject of rewriting
can also be specified explicitly after the Rewrite keyword.

See Section 9.9.5.1 [Rewrite|, page 41, for a detailed discussion of this statement.
See Section 4.3 [Conditional branches], page 11, for an in-depth discussion with ex-
amples.

See Section 4.4 [Modifying responses|, page 12, for a discussion of the use of this
statement to modify responses.

Chapter 9: Configuration 51

9.11.3 Service Logging

ForwardedHeader "name" [Service directive]
Defines the name of the HT'TP header that carries the list of proxies the request has
passed through. Default value is X-Forwarded-For. This header is used to determine
the originator IP address for logging. See [%a], page 23, for details.

TrustedIP [Service directive]
Defines a list of trusted proxy IP addresses, which is used to determine the originator
1P.

See [%a], page 23, for a detailed discussion.

This statement is a special form of ACL statement, described in Section 4.1.2 [ACL],
page 9. It can appear in two forms: as a section or as a directive. When used as a
section, it is followed by a list of one or more CIDRs each appearing on a separate
line. The End keyword terminates the statement, e.g.:

TrustedIP
"127.0.0.1/8"
"10.16.0.0/16"

End

In directive form, this statement takes a single argument, the name of an access
control list defined earlier using the ACL statement, e.g.

TrustedIP "proxy_addresses"

LogSuppress class [class...| [Service directive]
Suppresses HT'TP logging for requests that resulted in status codes from the specified
classes. Valid classes are:

info

1 ‘1xx’ response codes.
success

2 ‘2xx’ response codes.
redirect

3 ‘3xx’ response codes.
clterr

4 ‘4xx’ response codes.
srverr

5 ‘6xx’ response codes.
all All response codes.

This statement is designed for services that receive a constant stream of similar HT' TP
requests from a controlled set of IP addresses, such as e.g. Openmetric services. See
[Metrics], page 54, for an example.

9.11.4 Backends

Chapter 9: Configuration 52

9.11.4.1 Backend

The Backend section defines a regular backend. The overall syntax, as for any section
statement, is:

Backend ["name"]

End

Optional name argument assigns a symbolic name to the service. That name is used
to identify the backend in diagnostic and access log messages (see [log format], page 22),
metric output (see [Metrics|, page 54), and in poundctl requests (see Chapter 10 [poundctl],
page 57). In the absence of an assigned name, the ordinal (0-based) number of the backend
in the enclosing Service is used as its identifier.

The following statements can be used in a Backend section:

Address IP [Backend directive]
IP address or host name of the backend server. If the name cannot be resolved to a
valid address, pound will assume that it represents a path to a Unix-domain socket.

This directive is mandatory.

Port n [Backend directive]
Sets the port number to connect to. This directive must be present if the Address
statement contains an IP address.

Disabled bool [Backend directive]
Mark this backend as disabled.

Backends can be enabled or disabled at runtime using the poundctl utility (see
Section 10.1 [poundct]l commands|, page 58).

Note: not to be confused with the Disable statement, described below.

Priority n [Backend directive]
Sets numeric priority for this backend. Priorities are used to control probability of
receiving a request for handling in case of multiple backends. See Chapter 6 [Balancer],
page 18, for a detailed discussion.

Allowed values for n depend on the balancing algorithm in use. For random balancing,
allowed values are 0 to 9. For IWRR, allowed values are between 0 and 100.

The following three directives set various timeout parameters for backend operations:

TimeOut n [Backend directive]
Sets the response timeout, i.e. time to wait for a response from the backend (in
seconds). Default is 15.

ConnTO n [Backend directive]
Sets connection timeout, i.e. time to wait for establishing connection with the backend
(in seconds).

WSTimeOut n [Backend directive]
Idle timeout for WebSocket operations, in seconds. Default value: 600 (10 minutes).

Chapter 9: Configuration 53

Backend servers can use HT'TPS as well as plaintext HTTP. The following directives
configure HT'TPS backends:

HTTPS [Backend directive]
This directive indicates that the remote server speaks HT'TPS.

ServerName "name" [Backend directive]
This directive specifies the name to use for server name identification (SNI). It also
rewrites the Host: header for this particular backend. This means you don’t have to
use SetHeader in addition to it.

Cert "filename" [Backend directive]
This specifies the certificate that pound will use as a client. The filename is the name
of a file containing the certificate, possibly a certificate chain and the signature.

Ciphers "cipherlist" [Backend directive]
This is the list of ciphers that will be accepted by the SSL connection with the
backend (for HTTPS backends); it is a string in the same format as used by the
OpenSSL functions ciphers and SSL_CTX_set_cipher_list.

Disable proto [Backend directive]
Disable the SSL protocol proto and all earlier protocols. Allowed values for proto
are: SSLv2, SSLv3, TLSv1, TLSv1_1, TLSv1_2.

Note: not to be confused with the Disabled statement, described above.

9.11.4.2 Globally Defined Backends

The Backend section described above can also be used at the topmost level of the configu-
ration file. Use this if you plan to use same backend in several different services.

When used globally the Backend keyword must always be followed by the backend name
in double-quotes. The assigned name must be unique among all global backends.

To include a globally defined backend in a service, use UseBackend or Backend keywords.

UseBackend "name" [Service directive]
Use globally-defined backend name in this service. The backend itself may be defined
in global scope before or after the Service section that uses it.

The UseBackend keyword adds the backend to the service exactly as it was defined.
However, it may sometimes be necessary to alter its priority and state. To do so, use the
Backend section. If the name argument specifies a globally-defined backend, the Backend
section can contain only the Priority and Disable statements.

9.11.4.3 Special Backends
Special backends are backends that don’t rely on an external server to handle the response,

but instead are served by pound itself.

Error status [file] [Service directive]
Return a particular HT'TP status.

The status argument supplies the HT'TP status code to return.

Chapter 9: Configuration 54

Optional file argument is the name of a disk file with the error page content. If not
supplied, the text is determined as usual: first the ErrorFile status statement from
the enclosing listener is consulted. If it is not present, the default error page is used.

This directive is useful in a catch-all service, which outputs an error page if no service
matching the incoming request was found. See Section 4.7 [Error responses|, page 14,
for a discussion.

Redirect [code] "url" [Service directive]
Declares a special backend that responds to each request with a redirect response.

Optional code can be one of: 301, 302 (the default), 303, 307, or 308.

The url argument specifies the URL to redirect the request to. Before use it is
expanded as described in Section 9.3 [String Expansions], page 28.

For compatibility with previous pound versions, if no ‘$n’ references are found in url,
the following logic is used: if it is a "pure" host (i.e. with no path) then the client
will be redirected to that host, with the original request path appended. If the url
does contain a path (even if it is just a ‘/’), then the request path is ignored.

See Section 4.6 [Redirects], page 13, for a detailed discussion of this backend and its
use.

Metrics [Service directive]
This directive defines a special backend that generates Openmetric telemetry output
on the given URL. Example usage:

Service
URL "/metrics"
Metrics

End

To control access to the telemetry endpoint, use the ACL statement (see Section 4.1.2
[ACL], page 9).

The LogSuppress directive (see [LogSuppress|, page 51) is often used in openmetric
services to suppress logging of served HT'TP requests:

Service
URL "/metrics"
Metrics

ACL "secure"
LogSuppress success
End

The metrics output is discussed in Appendix A [Metric Families], page 67.

Emergency ... End [Service directive]
Defines an emergency backend, which will be used only if all other backends become
unavailable. The following directives are available for use within the Emergency sec-
tion: Address, Port, TimeOut, WSTimeOut, ConnT0O, HTTPS, Cert, Ciphers, Disable,
ServerName, These are discussed in Section 9.11.4.1 [Backend], page 52.

Chapter 9: Configuration 55

9.11.5 Session

Session ... End [Service directive]
Defines how a service deals with possible HT'TP sessions. Once a session is identified,
pound will attempt to send all requests within that session to the same backend server.
See Section 6.1 [Sessions], page 19, for a detailed discussion of HTTP sessions and
their handling.

The following directives are available for use in Session section.

Type type [Session directive]
Defines the expected type of sessions to handle. Allowed values for type are:

1P A session is defined by the source IP. All requests coming from the same
IP are considered to be in the same session. The IP address is defined by
the ID statement (see below).

BASIC A session is defined by the Authentication HTTP header. If the header
is present, and specifies the ‘Basic’ authentication type, user ID is ex-
tracted from it.

URL A session is identified by the value of a particular query parameter. The
name of the parameter is given by the ID statement.

PARM Sessions are identified by HT'TP parameter - a string that appears after
a semicolon in the URL, such as ‘bar’ in ‘http://foo.com;bar’.

COOKIE Sessions are identified by the value of an HTTP cookie, whose name is
given by the ID directive.

HEADER Sessions are identified by the value of HT'TP header whose name is given
by the ID directive.

ID "name" [Session directive]
Specifies the session identifier: IP address (for Type IP), query parameter name (for
Type URL), cookie name (for Type COOKIE), or header name (for Type HEADER).

TTL n [Session directive]
How long can a session be idle (in seconds). A session that has been idle for longer
than the specified number of seconds will be discarded. This directive is mandatory.

9.11.6 Other Statements

Disabled bool [Service directive]
If true, mark this service as disabled. Disabled services are not used for request
processing. A service can be enabled or disabled at runtime using the poundctl
utility (see Section 10.1 [poundctl commands], page 58).

Balancer algo [Service directive]
Sets the request balancing algorithm to use. Allowed values for algo are:

random Use weighted random balancing algorithm.

iwrr Use interleaved weighted round robin balancing.

Chapter 9: Configuration 56

See Chapter 6 [Balancer], page 18, for a detailed discussion of these algorithms.

This statement overrides the global Balancer statement (see Section 9.4 [Global di-
rectives], page 29).

IgnoreCase bool [Service directive]
Ignore case when doing regex matching (default: ‘false’). This directive sets the
default for the following service matching directives: URL, Path, QueryParam, Query,
StringMatch, as well as for the DeleteHeader modification directive.

This statement is deprecated and will be removed in future versions. Please, use the
-icase option to the matching directive instead (see Table 9.2).

o7

10 poundctl

The poundctl command displays status of various objects of the running instance and
allows you to change some of them.

The program communicates with the running pound daemon via a UNIX socket. For
this to work, pound configuration file must contain a Control statement (see [Control
statement], page 34). When started, poundctl opens the default pound.cfg file, looks up
for this statement and then uses the pathname defined in it as the control socket file.

This behavior can be altered in two ways. First, if the configuration file is in a non-
standard location, the pathname of this file can be given to the program using the -f
command line option. Secondly, the socket name can be supplied in the command line
explicitly, using the -s option.

The program invocation syntax is:
poundctl [options] command object [arg]

Here, options are command line options, command is a command verb that instructs
poundctl what to do, object identifies the pound object to operate upon (see [objects],
page 2), and optional arg supplies argument to the command verb.

Pound objects identifiers are formed in a path-like fashion:

/listener/service/backend

where:

listener Symbolic name of the listener or its ordinal number in the configuration. If
referring to a globally-defined service, or to a backend in such a service, a dash
is used.

service Symbolic name or ordinal number of the service located in that listener.

backend Ordinal number of backend in the service.

Depending on the command, either ‘/backend’ or both ‘/service/backend’ may be
omitted.

For example, the following command will disable backend 2 in service 1 of listener 0:
poundctl disable /0/1/2

Assuming listener 0 is named ‘web’, this example can also be written as:
poundctl disable /web/1/2

The following command disables the listener 0 itself:
poundctl disable /0

A dash in place of listener refers to the global scope. Thus, the following disables service
1 defined in the global scope of pound.cfg:

poundctl disable /-/1

Chapter 10: poundctl 58

10.1 poundctl commands

list /L/S/B [poundctl]
list /L/S [poundctl]
list /L [poundctl]
list [poundctl]

Lists status of the given object and its subordinates. Without argument, shows all

listeners and underlying objects.

enable /L/S/B [poundctl]
enable /L/S [poundctl]
enable /L [poundctl]
on /L/S/B [poundctl]
on /L/S [poundctl]
on /L [poundctl]
Enables listener, service, or backend.
disable /L/S/B [poundctl]
disable /L/S [poundctl]
disable /L [poundctl]
off /L/S/B [poundctl]
off /L/S [poundctl]
off /L [poundctl]
Disables listener, service, or backend.
delete /L/S key [poundctl]

Delete the session with the given key. Notice that backend may not be specified.

add /L/S/B key [poundctl]
Add a session with the given key.

10.2 poundctl options
The following options are understood by poundctl:

-f file Read pound configuration from file, instead of the default configuration file.

-in Sets indentation level for JSON output to n columns.
-j Use JSON output format.
-h Shows a short help output and exits.

-s socket Sets pathname of the control socket.

-T file Sets the name of the template file to use.

-t name Defines the name of the template to use, instead of the ‘default’.
-V Prints program version, compilation settings, and exits.

-V Increases output verbosity level.

Chapter 10: poundctl 59

10.3 poundctl template

Information received from the pound daemon is formatted as a JSON object. To produce
human-readable output, poundctl uses a template, i.e. a text written in a domain-specific
language expressly designed for that purpose. The template language complies, in gen-
eral, with the specification in https://pkg.go.dev/text/template. See Section 10.3.1
[Template syntax], page 59, for a detailed description.

Templates are stored in template files, which are looked up in the template search path.
The path is a column-delimited list of directories or file names. To locate the template file,
the path is scanned left-to right. If an element is a regular file name (or a hard or symbolic
link to a regular file), poundctl tries to open that file. If an element is a directory name,
the program tries to open the file poundctl.tmpl in that directory. If opening succeeds,
further scanning stops and templates are read from that file.

The default template path is

~/.poundctl.tmpl:datadir/pound
where datadir stands for the program data directory!. That is, the file .poundctl.tmpl in
the user home directory is searched first, then the file poundctl.tmpl (without the leading
dot) is looked up in the program data directory.

The default search path can be changed by setting the environment variable POUND_
TMPL_PATH.

To examine the default value of the search path, use the -V command line option.

The template file to use can be requested from the command line using the -t option.
In this case, template search path in not searched and the supplied file is used verbatim.

Unless instructed otherwise, poundctl uses the template ‘default’. You can request
another template name using the -T command line option.

The default poundctl.tmpl file defines two templates: ‘default’ and ‘xml’.

10.3.1 Template syntax

The syntax of poundctl templates is modelled after and mostly conforming to the specifi-
cations of the golang template module?.

Templates are executed by applying them to a JSON object. Annotations in a template
refer to attributes of the object to control execution and derive values to be displayed.
Execution of the template walks the structure and sets the cursor, represented by a period
(called dot), to the value at the current location in the object as execution proceeds.

The input text for a template is as ASCII text is arbitrary format.

Actions (data evaluations or control structures) are delimited by ‘{{” and ‘}}’; all text
outside actions is copied to the output verbatim.

To aid in formatting template source code, if ‘{{’ is followed immediately by a minus
sign and white space, all trailing white space is trimmed from the immediately preceding
text. Similarly, if ‘}}’ is preceded by white space and a minus sign, all leading white space
is trimmed from the immediately following text. Notice that the presence of the whitespace
in these trim markers is mandatory: ‘{{- 3}}’ trims the immediately preceding text and
outputs ‘3’, while "‘{{-3}}’ parses as an action containing the number ‘-3’.

1 It is determined at compile time. Normally it is /usr/share/pound or /usr/local/share/pound.
2 https://pkg.go.dev/text/template

https://pkg.go.dev/text/template
https://pkg.go.dev/text/template

Chapter 10: poundctl 60

10.3.1.1 Actions

Here is the list of actions. Arguments and pipelines are evaluations of data, defined in detail
in the sections that follow.

{3} Empty action is discarded. It may be useful to trim the preceding or following
whitespace, as in

{{- -}

{{/* a comment */}}
Comments are discarded. They may span multiple lines of text. Comments do
not nest and must start immediately after the opening delimiter (with optional
dash and whitespace in between). A comment may be followed by any action
described below.

Comments may be used to control trailing and leading whitespace as well:

{{- a comment trimming the surrounding whitespace -}}

{{ pipeline }}
The pipeline is evaluated, and the default textual representation of its value is
copied to the output.

{{if pipeline }} T1 {{end}}
If the value of the pipeline is empty, no output is generated; otherwise, T1 is
executed. The empty values are null, false, numeric 0, empty string (‘""’),
array (‘[17), or object (‘{}’). Dot is unaffected.

{{if pipeline }} T1 {{else}} TO {{end}}
If the value of the pipeline is empty, T0 is executed; otherwise, T'1 is executed.
Dot is unaffected.

{{if pipeline }} T1 {{else if pipeline }} T2 {{else}} TO {{end}}
A shortcut to simplify writing the if-else chains. Equivalent to (newlines added
for readability):

{{if pipeline }}
T1

{{else -}}

{{if pipeline }}
T2

{{else}}
TO

{{end}}

{{end}}

{{range pipeline }} T1 {{end}}
The value of pipeline must be an object or array. If it is of length zero, nothing
is output. Otherwise, dot is set to the successive elements of the array or object
and T'1 is executed. For objects, the elements will be visited in sorted key order.

{{range pipeline }} T1 {{else}} TO {{end}}
Same as above, except that if the value of the pipeline is of length zero, TO is
executed with dot unaffected.

Chapter 10: poundctl 61

Within the {{range}} action, the following two keywords may appear:

{{break}}
The innermost ‘{{range pipeline}}’ loop is ended early, stopping
the current iteration and bypassing all remaining iterations.

{{continue}}
The current iteration of the innermost ‘{{range pipeline}}’ loop
is stopped, and the loop starts the next iteration.

{{define "name"}} text {{end}}
The text is collected and stored for the further use as template with the given
name. It can be invoked using the ‘{{template}}’ action (see below).

{{template "name"}}
The template with the specified name (see the ‘{{define}}’ above) is executed
with dot set to null.

{{template "name" value }}
The template with the specified name (see the ‘{{define}}’ above) is executed
with dot set to value.

{{block "name" pipeline }} T1 {{end}}
A block is shorthand for defining a template and then executing it in place:
{{define "name"}} T1 {{end}}
{{template "name" pipeline}}

{{with pipeline }} T1 {{end}}
If the value of the pipeline is empty, no output is generated; otherwise, dot is
set to the value of the pipeline and T1 is executed.

{{with pipeline }} T1 {{else}} TO {{end}}
Same as above, but if the value of the pipeline is empty, T0 is executed with
dot unchanged.

10.3.1.2 Arguments
An argument is a simple value, i.e. any of the following:
e Numeric value (integer or floating point)
e Boolean value: true or false.
e Quoted string.
e A dot (‘.7) This represents the cursor value.

e Attribute: ‘.attr’ This is the value of the attribute attr in the current value (dot).
Attribute references can be nested, as in ‘.Attr.Xattr.Yattr’.

e A variable reference: ‘$var’. Here, var is the name of the variable defined in the range
action. See Section 10.3.3 [Variables], page 63, below.

e Function call in parentheses, for grouping.

Chapter 10: poundctl 62

10.3.2 Pipelines
A pipeline is a series of one or more commands delimited by pipe sign (‘1’). Each command
is either an argument or a function call, in form:
func argl arg2...
where func is the name of one of the built-in functions discussed below.

Pipelines are executed from left to right, with the result of the previous command im-
plicitly added to the list of arguments of each subsequent command. For example, the
pipeline

.attr | eq $x
is equivalent to
eq $x .attr

i.e. it calls the built-in function eq with two arguments: the value of the variable ‘x’ and
attribute ‘attr’ of the cursor value.

The following built-in functions are defined:

and A1 A2 [Template built-in]
Evaluates to true if pipelines A1 and A2 both evaluate to true. Notice, that there
is no boolean shortcut evaluation: both pipelines are evaluated prior to calling and.

or Al A2 [Template built-in]
Evaluates to true if at least one of the pipelines A1 and A2 evaluates to true. Notice,
that there is no boolean shortcut evaluation: both pipelines are evaluated prior to
calling or.

index Al A2... [Template built-in]
Returns the result of indexing its first argument by the following arguments. Thus,
if ©.7 is an array, then:

index . 5
evaluates to its fifth element (‘. [5]7).

len Al [Template built-in]
Returns the integer length of its argument.

not Al [Template built-in]
Returns true if its argument evaluates to false.

eq A1 A2 [Template built-in]
Returns true if both its arguments are equal. This applies only if both A1 and A2
are numeric or if they both are strings.

ne Al A2 [Template built-in]
Returns true if its arguments (both must be numeric or strings) are not equal.

1t A1 A2 [Template built-in]
Returns true if A1 is numerically less than A2.

le A1 A2 [Template built-in]
Returns true if A1 is numerically less than or equal to A2.

Chapter 10: poundctl 63

gt A1 A2 [Template built-in]
Returns true if A1 is numerically greater than A2.

ge Al A2 [Template built-in]
Returns true if A1 is numerically greater than or equal to A2.

even Al [Template built-in]
Returns true if A1, which must evaluate to an integer value, is divisible by 2.

printf FMT Al... [Template built-in]
Implements the printf function. FMT must evaluate to string. Rest of arguments
is interpreted according to the conversion specifications in FMT. The result is a
formatted string.

In addition to the standard conversion specifications, the ‘%v’ specifier is implemented:
it formats its argument in the best way, depending on its actual type.

typeof Al [Template built-in]
Evaluates to the type of its argument, one of: null, bool, number, integer, string,
array, and object.

exists Al A2 [Template built-in]
Al must evaluate to an object and A2 to string. The function evaluates to true if
the attribute A2 is present in Al.

add A1 A2... [Template built-in]
Returns the sum of its arguments.

sub Al A2 [Template built-in]
Returns the difference A1 - A2.

mul Al A2 [Template built-in]
Multiplies A1 by A2.

div A1 A2 [Template built-in]
Divides A1 by A2.

10.3.3 Variables
Variables (referred to as $name) can be defined in range and with actions. For range, the
syntax is:

{{range $index, $element = pipeline }} T1 {{end}}

where index and element are arbitrary variable names. When executing this action, during
each iteration $index and $element are set to the index (attribute name) and value of each
successive element. Dot remains unaffected.

For with, the syntax is:
{{with $var = pipeline }} T1 {{end}}

Pipeline is evaluated, its result is assigned to $var and the T1 block is executed with
dot unchanged.

A variable’s scope extends to the end action of the control structure (with or range) in
which it is declared. This includes any nested statements that may appear in between.

Chapter 10: poundctl 64

10.3.4 Input object

Depending on the request issued by poundctl, the invoked template can receive as its
argument (dot) an object of the following types: full listing, listener, service, or backend.

Since there is no explicit indication of the object type being passed, templates normally
use heuristics based on the presence or absence of certain attribute to deduce the object
type in question. The recommended approach is described in the following pseudo-code
fragment:

{{if exists . "listeners" }}
{{/* This is a full listing, as requested by poundctl list. */}}

{{else if exists . "services"}}
{{/* Single listener, as requested by poundctl list /L.
Notice that this attribute is present in the full listing as
well, so presence of "listeners" should be checked first. */}}

{{else if exists . "backends"}}
{{/* Single service, as requested by poundctl list /L/S. */}}
{{else}}
{{/* Backend listing (poundctl list /L/I/B) =*/}}
{{end}}
Structures of each object are discussed in subsections that follow.

10.3.4.1 Full listing

A full listing contains the following attributes:

listeners
An array of listener objects. See below for a description.

services An array of service objects, representing services defined in the global scope of
the pound configuration file.

pid PID of the running pound daemon.
version Pound version number (string).

workers Workers statistics. This is a JSON object with the following attributes:

active Number of active threads.

count Number of threads currently running.
max Maximum number of threads.

min Minimum number of threads.

timeout Thread idle timeout.

queue_len
Number of incoming HTTP requests in the queue (integer).

Chapter 10: poundctl 65

timestamp
Current time on the server, formatted as ISO 8601 date-time with microsecond
precision, e.g.: ‘2023-01-05T22:43:18.071559’".

10.3.4.2 Listener

A listener object represents a single HT'TP or HTTPS listener in pound configuration. It
has the following attributes:

address Address of this listener. A string formatted as ‘ip:port’. for IPv4 and IPv6
addresses or containing a socket file name, for UNIX sockets.

protocol Protocol used: either ‘http’ or ‘https’.

services Array of service objects representing services defined in this listener. See below
for the definition of a service object.

enabled Boolean. Whether this listener is enabled or not.

nohttpsil
Value of the NoHTTPS11 configuration statement for this listener (see
Section 9.10 [ListenHTTPS], page 46). One of: 0, 1, 2.

10.3.4.3 Service

A service object describes a single service.

name Symbolic name of this service.

enabled Boolean. Whether this service is enabled or not.

tot_pri Sum of priority values of active backends in this service.
abs_pri Sum of priority values of all defined backends in this service.

session_type
Name of the session handling algorithm for this service. One of: ‘IP’, ‘BASIC’,
‘URL’, ‘PARM’, ‘COOKIE’, ‘HEADER .

sessions List of active sessions in this service. Each session is represented as object with
the following attributes:

key Session key (string).

backend Ordinal number of the backend assigned to handle requests with
this session.

expire Expiration time of this session, formatted as ‘1970-01-01T00:00:00.000000’
(with microsecond precision).

backends List of backends defined for this service.

emergency
Emergency backend object, or null if no such backend is defined.

Chapter 10: poundctl 66

10.3.4.4 Backend

The following attributes are always present in each backend object:
alive Whether or not this backend is alive.
conn_to Connection timeout for this backend (seconds).
enabled Whether or not this backend is enabled.
io_to I/O timeout for this backend (seconds).
priority Priority value assigned to this backend.
protocol Protocol used by this backend: either ‘http’ or ‘https’.
type Backend type. One of: ‘acme’, ‘backend’, ‘control’, ‘redirect’.
ws_to Websocket timeout (seconds).
Depending on the backend type, the following attributes may be present:
acme An object of the following structure:
path Directory where ACME challenges are stored.
backend Object:
address Backend address.
redirect Object:
url URL to redirect to.
code HTTP code for redirection responses. One of: 301, 302, 307.

redir_req
Boolean: whether to append the original request path to the re-
sulting location.

If backend statistics is enabled (see [BackendStats], page 31), the stats object will be
present, with the following attributes:

request_count
Total number of requests processed by this backend.

request_time_avg
Average time per request, in nanoseconds.

request_time_stddev
Standard deviation of the above.

67

Appendix A Metric Families

This appendix describes metric families returned in the output of openmetrics pound back-
ends (see [Metrics|, page 54).

gauge pound_workers [Metric family]
Number of pound workers (see Chapter 7 [Worker model], page 21). Indexed by types:

‘active’ Number of workers currently active.
‘count’ Number of workers running (both idle and active).

min Minimum number of workers as set by the WorkerMinCount configuration
directive (see Section 9.4 [Global directives|, page 29).

max Maximum number of workers as set by the WorkerMaxCount configuration
directive (see Section 9.4 [Global directives], page 29).

Example:
pound_workers{type="active"} 2
pound_workers{type="count"} 5
pound_workers{type="max"} 128
pound_workers{type="min"} 5

stateset pound_listener_enabled [Metric family]
State of a listener: enabled/disabled. Indexed by the listener ordinal number.
pound_listener_enabled{listener="0"} 1
pound_listener_enabled{listener="1"} 0
pound_listener_enabled{listener="2"} 1

info pound_listener_info [Metric family]
Description of a listener. Each instance contains the following indices:

‘listener’
Listener ordinal number.

‘name’ Listener name, as set in the ListenHTTP or ListenHTTPS statement (see
Section 9.9 [ListenHTTP], page 36).

‘address’ Listener address. For INET family, it is formatted as ‘IP: PORT, for UNIX
sockets, it is the pathname of the socket.

‘protocol’
Either ‘http’ or ‘https’.
The value of this metrics is always ‘1’.

pound_listener_info{listener="0",name="",address="/run/pound.sock",protocol="http
pound_listener_info{listener="1",name="plain",address="0.0.0.0:80",protocol="http
pound_listener_info{listener="2",name="tls",address="0.0.0.0:443",protocol="https

info pound_service_info [Metric family]
Description of a service. Indices:

listener Listener ordinal number. This index is absent for globally defined ser-
vices.

Appendix A: Metric Families 68

service

name

Index of the service in listener (or in global configuration, for globally
defined services).

Service name as set in the Service definition (see Section 9.11 [Service],
page 47).

pound_service_info{listener="0",service="0",name=""3} 1
pound_service_info{listener="1",service="0",name=""3} 1
pound_service_info{listener="1",service="1",name="redirect"} 1
pound_service_info{listener="2",service="0",name="metrics"} 1
pound_service_info{listener="2",service="1" ,name="web"} 1
pound_service_info{service="0",name="fallback"} 1

stateset pound_service_enabled [Metric family]
State of a particular service.

pound_service_enabled{listener="0",service="0"} 1
pound_service_enabled{listener="1",service="0"} 1
pound_service_enabled{listener="2",service="0"} 1
pound_service_enabled{service="0"} 1

gauge pound_service_pri [Metric family]
Service priority value. This is the sum of priorities of all backends defined in the
service (see Chapter 6 [Balancer], page 18). Indexes:

listener

service

entity

Listener ordinal number. This index is absent for globally defined ser-
vices.

Index of the service in listener (or in global configuration, for globally
defined services).

If ‘total’, the metrics contains the sum of priorities of all currently active
backends, if ‘absolute’, the sum of priorities of all backends, both active
and inactive.

pound_service_pri{listener="0",service="0",entity="total"} 10
pound_service_pri{listener="0",service="0",entity="absolute"} 15
pound_service_pri{service="0",entity="total"} 1
pound_service_pri{service="0",entity="absolute"} 1

gauge pound_backends [Metric family]
Number of backends per service: total, alive, enabled, and active (both alive and
enabled). Indices:

listener

service

state

Example:

Listener ordinal number. This index is absent for globally defined ser-
vices.

Index of the service in listener (or in global configuration, for globally
defined services).

Backend state: ‘total’, ‘alive’, ‘enabled’, or ‘active’.

Appendix A: Metric Families 69

pound_backends{listener="0",service="0",state="total"} 5
pound_backends{listener="0",service="0",state="enabled"} 3
pound_backends{listener="0",service="0",state="alive"} 3
pound_backends{service="0",state="total"} 1
pound_backends{service="0",state="enabled"} 1
pound_backends{service="0",state="alive"} 1

stateset pound_backend_state [Metric family]
State of each backend. Indices:

listener Listener ordinal number. This index is absent for globally defined ser-
vices.

service Index of the service in listener (or in global configuration, for globally
defined services).

backend Index of the backend in service.

state ‘enabled’: whether the backend is enabled or not.
‘alive’: whether the backend is alive or not.

Example:

pound_backend_state{listener="0",service="0",backend="0",state="alive"} 1
pound_backend_state{listener="0",service="0",backend="0",state="enabled"} 1
pound_backend_state{listener="0",service="0",backend="1",state="alive"} 1
pound_backend_state{listener="0",service="0",backend="1",state="enabled"} 0

gauge pound_backend_requests [Metric family]
Number of requests processed by backend. This metrics is available only if backend
statistics is enabled (see [BackendStats|, page 31).

Example:

pound_backend_requests{listener="0",service="0",backend="0"} 40587
pound_backend_requests{listener="1",service="0",backend="0"} 13858

gauge pound_backend_request_time_avg_nanoseconds [Metric family]
Average time per request spent in backend (nanoseconds). This metrics is available
only if backend statistics is enabled (see [BackendStats|, page 31).

pound_backend_request_time_avg_nanoseconds{listener="0",service="0",backend="0"}
pound_backend_request_time_avg_nanoseconds{listener="1",6service="2",backend="0"}

gauge pound_backend_request_stddev_nanoseconds [Metric family]
Standard deviation of the average time per request. This metrics is available only if
backend statistics is enabled (see [BackendStats|, page 31).

pound_backend_request_stddev_nanoseconds{listener="0",service="0",backend="0"} 0
pound_backend_request_stddev_nanoseconds{listener="1",service="2",backend="0"} 59

70

Appendix B Time and Date Formats

This appendix documents the time format specifications understood by the ‘%{format}t’
log format conversion. Essentially, it is a reproduction of the man page for GNU strftime
function.

Ordinary characters placed in the format string are reproduced without conversion.
Conversion specifiers are introduced by a ‘%’ character, and are replaced as follows:

%a The abbreviated weekday name according to the current lo-
cale.

%A The full weekday name according to the current locale.

%b The abbreviated month name according to the current locale.

%B The full month name according to the current locale.

%oc The preferred date and time representation for the current
locale.

%C The century number (year/100) as a 2-digit integer.

%d The day of the month as a decimal number (range 01 to 31).

%D Equivalent to ‘Y%m/%d/%y’.

%oe Like ‘%d’, the day of the month as a decimal number, but a

leading zero is replaced by a space.

NE Modifier: use alternative format, see below (see [conversion
specs|, page 72).

%F Equivalent to ‘%Y-%m-%d’ (the ISO 8601 date format).

%G The ISO 8601 year with century as a decimal number. The
4-digit year corresponding to the ISO week number (see ‘%V’).
This has the same format and value as ‘%y’, except that if the
ISO week number belongs to the previous or next year, that
year is used instead.

%og Like ‘%G’, but without century, i.e., with a 2-digit year (00-99).

%h Equivalent to ‘%b’.

Appendix B: Time and Date Formats

%H

%ol

V]

Yok

%01

%m
%M
%n

%0

Jop

%P

%r

%R

%s

%S
%t

%T

The hour as a decimal number using a 24-hour clock (range
00 to 23).

The hour as a decimal number using a 12-hour clock (range
01 to 12).

The day of the year as a decimal number (range 001 to 366).

The hour (24-hour clock) as a decimal number (range 0 to
23); single digits are preceded by a blank. (See also ‘%H’.)

The hour (12-hour clock) as a decimal number (range 1 to
12); single digits are preceded by a blank. (See also ‘%I’.)

The month as a decimal number (range 01 to 12).
The minute as a decimal number (range 00 to 59).
A newline character.

Modifier: use alternative format, see below (see [conversion
specs|, page 72).

Either ‘AM’ or ‘PM’ according to the given time value, or the
corresponding strings for the current locale. Noon is treated

as ‘pm’ and midnight as ‘am’.

Like ‘%4p’ but in lowercase: ‘am’ or ‘pm’ or a corresponding
string for the current locale.

The time in ‘a.m.’ or ‘p.m.’ notation. In the POSIX locale
this is equivalent to ‘%I:%M:%S %p’.

The time in 24-hour notation (‘4H:%M’). For a version includ-
ing the seconds, see ‘%T’ below.

The number of seconds since the Epoch, i.e., since 1970-01-01
00:00:00 UTC.

The second as a decimal number (range 00 to 61).
A tab character.

The time in 24-hour notation (‘%H:%M:%S’).

Appendix B: Time and Date Formats 72

%ou The day of the week as a decimal, range 1 to 7, Monday being
1. See also ‘%’

%U The week number of the current year as a decimal number,
range 00 to 53, starting with the first Sunday as the first day
of week 01. See also ‘%V’ and ‘%W’

%V The ISO 8601:1988 week number of the current year as a
decimal number, range 01 to 53, where week 1 is the first
week that has at least 4 days in the current year, and with
Monday as the first day of the week. See also ‘%U’ and ‘%W’.

%ow The day of the week as a decimal, range 0 to 6, Sunday being
0. See also ‘%u’.

%W The week number of the current year as a decimal number,
range 00 to 53, starting with the first Monday as the first day
of week 01.

Yox The preferred date representation for the current locale with-

out the time.

%X The preferred time representation for the current locale with-
out the date.

Yoy The year as a decimal number without a century (range 00 to
99).

%Y The year as a decimal number including the century.

%oz The time-zone as hour offset from GMT. Required to emit
RFC822-conformant dates (using ‘%a, %d %b %Y %H:%M: %S
hz’)

Y/ The time zone or name or abbreviation.

Yo+ The date and time in date(1) format.

%% A literal ‘%’ character.

Some conversion specifiers can be modified by preceding them by the ‘E’ or ‘0’ modifier
to indicate that an alternative format should be used. If the alternative format or spec-
ification does not exist for the current locale, the behaviour will be as if the unmodified
conversion specification were used. The Single Unix Specification mentions ‘%Ec’, ‘%EC’,
REX’ REX, ‘URy’, “UEY’, ‘%04’, ‘%0e’, ‘%0OH’, ‘%0I’, ‘%0m’, ‘%0M’, ‘%0S’, ‘%0u’, ‘%0U’, ‘%0V’,
“%0w’, “%0W’, ‘%0y’, where the effect of the ‘0’ modifier is to use alternative numeric symbols

Appendix B: Time and Date Formats 73

(say, roman numerals), and that of the ‘E’ modifier is to use a locale-dependent alternative
representation.

74

Appendix C GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

https://fsf.org/

Appendix C: GNU Free Documentation License 75

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix C: GNU Free Documentation License 76

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix C: GNU Free Documentation License 7

=

N.

O.

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix C: GNU Free Documentation License 78

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix C: GNU Free Documentation License 79

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix C: GNU Free Documentation License 80

10.

11.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

https://www.gnu.org/licenses/

Appendix C: GNU Free Documentation License 81

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Tt e 23
S 24
S{format}It 24
Alhdrdi ... 24
Whdr}T ... 24
HLob L oo 24
KLob N L 24
AunitIT ..o 25
/- P 23
BB 23
Kb 23
B 23
AD 23
Whoo 23
BH . 23
/5 24
AP 24
/= 24
T 24
e 24
/3 24
/3 S 25
2 PP 25
U 25
Y 25
-beg, DeleteHeader option 40
-beg, header matching flag................... 43
T e 4
-case, DeleteHeader option.................. 40
-case, header matching flag.................. 43
-contain, DeleteHeader option............... 40
-contain, header matching flag.............. 43
T 4
-end, DeleteHeader option................... 40
-end, header matching flag................... 43
-exact, DeleteHeader option................. 40
-exact, header matching flag 43
1M 4
-f,poundctl......l 58
-file, header matching flag.................. 43
SF 4
Sho 4
-h, poundctl.........l 58
-i, poundctl......... ...l 58
-icase, DeleteHeader option................. 40
-icase, header matching flag 43
—j,poundctll 58
D e 4
-pcre, DeleteHeader option.................. 40

-pcre, header matching flag.................. 43

82

-perl, DeleteHeader option.................. 40
-perl, header matching flag.................. 43
-posix, DeleteHeader option................. 40
-posix, header matching flag 43
-re, DeleteHeader option..................... 40
-re, header matching flag.................... 43
—s, poundctl 58
—t, poundctl......... ... il 58
=T, poundctl ... 58
TV 4
—v, poundctl ... 58
SV 5
=V, poundctl ... 58
W 5
/etc/services i 36

400 ... 37
401 .. 37
403 . 38
404 ... 38
405 . . 38
A1 . 38
414 .. 38

B00 . . 38
B0L . 38
B0 . 38

ACL. .ot 32, 41, 48
ACME . . e 45
add ..o 58, 63
AddHeader i 39, 50
Address............. o ool 36, 52
Alive. . . 35
all, log suppression..............ooiininnnnn. 51
ANA . e 62
‘and’, logical ... 8
Anonymise.......l 34
Anonymize.......... oo 34
ADSIS « ot 1
authentication, basic........................... 12

Index

B

backend........ 2
Backend i 52
backend, external o ol 13
backend, regular i 2
backend, special............. ...l 13
BackendStats..............ol 31
backreference expansion........................ 10
Balancer............. ... 18, 31, 55
balancingo i i 18
balancing strategyl 18
basic authentication......................... ... 12
BASIC, session typeccovviiiiiiinnnnn. 55
BasicAuth............... oo 12, 41, 48
boolean value, configuration file................ 27

C

CALISt. .o 47
case insensitive match, DeleteHeader........... 40
case insensitive match, headers................. 43
case sensitive match, DeleteHeader 40
case sensitive match, headers................... 43
Cert ..o 46, 53
challenge directory, ACME..................... 15
challenges, ACME ...t 15
ChangeQwner...........................ona.. 35
CheCKURL . ..ottt i 37
Ciphers........... oo ool 47, 53
Client....... ..o 35, 36
ClientCert oottt 46
clterr, log suppression.................o.uun. 51
combined, built-in format 25
combined, request logging 22
comments, configuration file.................... 27
compound statement........................... 28
conditions, joiningl 8
conjunction, implicit o oo 8
conjunction, logical 8
ConnTO. ...ttt 35, 52
Control ...t 34
control SOCKet 34
COOKIE, sessiontype......................... 55
CRLIISt ¢ttt 47
custom log formato 22

DABIMOML. .« o\ttt ettt e e e 29
delete... ...t 58
DeleteHeadercoovvvvvennnn. 40, 45, 50
detailed, built-in format 26
detailed, request logging 22
directiveo 27
Disable........ccoiiiiiiiiiiiiiiiii . 46, 53
disable ... 58
Disabled.........ooiiiiiiniiiiinninnn.. 52, 55

disjunction, logical L. 8

83
iV e 63
ADS . 5
E
ECDHCUTVE . . ottt et e 32
Emergencyc.oovviiiiiiiiiiii i 54
enable. 58
1= 62
Errd00.o 37
Errd0l. ..o 37
Errd03. .. 37
Errd04. ... o 37
Errdld. 37
Errdld. ..o 37
ErrB00. . ..o 37
Errb0l. . 37
Errb03. ... 37
Brror . o 53
ErrorFile ..ot 37
escape charactero 27
L3+ P 63
exact match, DeleteHeader 40
exact match, headers........................... 43
exists. .. o 63
expansion, backreference 10
extended, built-in format 25
extended, request logging 22
F
file lookup, headers 43
ForwardedHeader....................... 34, 39, 51
Frank Schmirler..................oiiiiiiia., 1
G
B 63
GraCE .t ettt et e 35
GIOUD. .\ttt 29
=28 2 63
H
Headero, 42, 45, 48
header..t 29
HEADER, sessiontype......................... 55
HeaderAdd i, 39, 50
HeaderOption...............t 31
HeaderRemovecccvviiiinnnnnnnnn. 41, 50
HeadRemove, 41, 50
hoSt .ot 29
Host......oo oo 6, 42, 49
HT TS . .o e 53

Index

I

I ettt e 55
IgnoreCaseoiiiiiiiii... 32, 56
Include ...t 33
include-dir=dir...........ccoiiiiiiiiiiiinaan.. 5
IncludeDir..............o oot 33
INAEXK . ottt e 62
info, log suppression............... 51
Interleaved weighted round robin balancing..... 18
internal backend o ool 13
IP address.........coooiiiiiii i 27
IP, session type.......ccoiviiiiiiiiiii 55
s o o 19

L 62
I« 62
LetsEncrypt ... 15
lexical structure of the configuration file........ 27
List. o 58
listener ... 2
ListenHTTP................iiiiiiiin, 36
ListenHTTPS. 46
load balancing o il 18
log format, user-defined 22
LogFacilityt 22, 33
LogFormatcovvuiiiiiiiinnnnnnnnnn. 22, 33
logical ‘and’............ il 8
logical ‘and’; explicit i 8
logical ‘and’, implicit....................ooiil 8
logical conjunction, explicit...................... 8
logical disjunction.................. ... ii.... 8
logical ‘or’ 8
Logleveluuiiiiiiiiinnnn 22, 33, 39
LogSuppress.........c.ooiiiiiiiiiii 51
LogTag. ...oovviii 34
Lt 62

Match. ...t 8, 43, 49
matching rules......... ... o il 6
matching rules, joining................ 8
MaxRequestoiiiiiiiii 36
MaxURI. ...t e e 36
Metrics .oivii i 54
Mode.... ...t 35
MUL .. 63
multiple matching rules 8

84

N
41 62
no-include-dir 5
NoHTTPS11 .. o e 47
MOt ottt 43, 49
4 Lo v PPN 62
null, built-in format................ 25
null, request logging...............oouuuin, 22
numbers, configuration file..................... 27
O
O’Sullivan, Rick........ ... 1
off L 58
<3« 58
O ettt 62
‘or’, logical 8
P
PATAMN. .\ttt 29
PARAM, sessiontype................ 55
parenthesized subexpression.................... 10
Path ..o 42, 49
path.. ... 29
PCRE match, DeleteHeader 40
PCRE match, headers 43
Perl-compatible regular expression

match, DeleteHeader........................ 40
Perl-compatible regular expression

match, headers............ 43
Perl-compatible regular expressions.............. 9
PIDFile ...ttt e 30
POTt .. 29
Port ... 36, 52
posix regular expression match, DeleteHeader .. 40
posix regular expression match, headers........ 43
POSIX regular expressionsc.c...coouee... 6
pound.cfg........ ... 2
pound_backend_request_

stddev_nanoseconds 69
pound_backend_request_time_

avg_nanoseconds............... ... 69
pound_backend_requests...................... 69
pound_backend_state.............. 69
pound_backendsl 68
pound_listener_enabled...................... 67
pound_listener_info.......................... 67
pound_service_enabled....................... 68
pound_service_info............. oL 67
pound_service_pri............ol 68
Pound_WOTKeISvviinuinieennnnnnennn. 67
POUND_TMPL_PATH, 59
poundctl.tmpl oo 59
prefix match, DeleteHeader.................... 40
prefix match, headers.................. 43

Index

Priority........ ... i 52
QUETY .« v v v ettt 29
QUeTy ... 42, 49
QueryParam...........ccoviiiiiiiiiiiiaiaan 42, 49
quoted string i 27

Tandom. . ..o 19
redirect 13
Redirectot 54
redirect, log suppression 51
RegexType...........oooii il 9, 32
regular backendol 2
regular expression match, DeleteHeader........ 40
regular expression match, headers.............. 43
regular expressions, PCRE 9
regular expressions, Perl-compatible............. 9
regular expressions, POSIX 6
regular, built-in format..................... 25
regular, request logging..................... 22
TEQUESE ACCESSOT .« vttt ettt e e e 11
request balancingo oL 18
request matching rules............... 6
Rewrite....... .o, 41, 50
TEWLATE oottt e 11
RewriteDestination........................... 39
Rewritelocation..............cooiviunieiinnnn. 44
REC 7617 ..o 12
Rick O’Sullivan ... 1
Robert Segall i 1
RootJail i i il 30

S

Schmirler, Frank oL 1
search path, templates......................... 59
SECEIOM .« v vttt 28
Segall, Robert.......... ... i 1
ServerName...............ooiiiiiiiiiiiiii.. 53
SEIVICE .« vttt 2
Service definitions.......................... 45
SESSIOM .ottt e 19
Sessioniiiiiii 55
SetHeader.........c.o.ouuuuruiiiinnnnnnnn. 39, 45, 50
SetPath......... .o i 39, 50
SetQuery..............l 39, 50
SetQueryParam.............ccoiiuiiiinnn.. 39, 50
SEtURLttt 39, 50
simple statement..........ol 27
SOCKE . ot 34
SocketFrom................ . ..ol 36
special backend il 13
srverr, log suppression...................... 51

SSLAllowClientRenegotiation................ 47

85
SSLEngine ...t 32
SSLHonorCipherOrder.......................... 47
SOLV2 .ttt 46, 53
SOV e ettt e 46, 53
statement, compound oo 28
statement, simple........ o ool 27
strategy, request balancing 18
StringMatch.............. L 42, 45, 49
SUb ... 63
substring match, DeleteHeader 40
substring match, headers....................... 43
success, log suppression..................... 51
suffix match, DeleteHeader 40
suffix match, headers........................... 43
SUPEIVISOr ...\ttt 30
T
template search path..........., 59
Threadso 30
time formats.......... ..o i 70
TimeOut.........oooiiiiiiii i 35, 52
TLSVL ot 46, 53
TLSVL Lo 46, 53
TLSVL 2. e 46, 53
TrustedIP................. 34, 39, 51
P 55
Ty . e 55
typeof. ... 63
U
UL . 29
URL .ottt e e 42, 49
URL, session type..........ooviiiiiiiiininnnnn. 55
UseBackend.............. ... 53
USEr . ottt 30
user database........... ... i 12
\%
values, configuration file.............. 27
VerifyList......... ... i 47
vhost_combined, built-in format............. 25
vhost_combined, request logging............. 22
\%\%
warn-deprecated i, 5
Weighted random balancing.................... 18
WorkerIdleTimeout 21, 30
WorkerMaxCount..............coooviiiinnn.. 21, 30
WorkerMinCount..............ccovivieenn... 21, 30
WSTimeOut ... 35, 52

Index

86

	1 Overview
	2 Introduction
	3 Usage
	4 Simple Proxy
	Service Selection
	Regular Expressions
	ACL

	Request modifications
	Conditional branches
	Modifying responses
	Authentication
	Redirects
	Error responses

	5 HTTPS
	ACME
	Redirect HTTP to HTTPS
	HTTPS backends

	6 Request balancing
	Sessions

	7 Worker model
	8 Logging
	9 Configuration
	Lexical structure
	Syntax
	String Expansions
	Backreference expansion
	Request Accessor Interpretation

	Global directives
	Runtime directives
	Worker Settings
	Proxy Tuning Directives
	SSL Settings
	Regular Expression Settings
	ACL Definition

	File inclusion
	Logging configuration
	Control socket settings
	Timeouts
	ListenHTTP
	Listener address
	Listener-specific limits
	Error definitions
	Listener logging
	Request Modification
	The rewrite statement

	Response Modification
	The Rewrite response statement.

	Service definitions

	ListenHTTPS
	Service
	Service Selection Statements
	Request and Response Modification
	Service Logging
	Backends
	Backend
	Globally Defined Backends
	Special Backends

	Session
	Other Statements

	10 poundctl
	poundctl commands
	poundctl options
	poundctl template
	Template syntax
	Actions
	Arguments

	Pipelines
	Variables
	Input object
	Full listing
	Listener
	Service
	Backend

	A Metric Families
	B Time and Date Formats
	C GNU Free Documentation License
	Index

